A Randomized Controlled Trial on the Effectiveness of Epidermal Growth Factor-Containing Ointment on the Treatment of Solar Lentigines as Adjuvant Therapy

Hye One Kim, Hye Ran Kim, Jin Cheol Kim, Seok Young Kang, Min Je Jung, Sung Eun Chang, Chun Wook Park, Bo Young Chung, Hye One Kim, Hye Ran Kim, Jin Cheol Kim, Seok Young Kang, Min Je Jung, Sung Eun Chang, Chun Wook Park, Bo Young Chung

Abstract

Background and Objective: Little is known about the anti-pigmentation effects of whitening agents on solar lentigines. Epidermal growth factor (EGF) has been used as a booster for wound healing in the skin, and it has been suggested to have anti-pigmentation effects. This study aimed to evaluate the effect and safety of EGF-containing ointment for treating solar lentigines with a Q-switched (QS) 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (Bluecore company, Seoul, Republic of Korea). Materials and Methods: Subjects who underwent QS 532 nm Nd:YAG laser treatment of solar lentigines were randomly assigned to treatment with an EGF ointment or petrolatum. After the laser procedure, the subjects were administered the test ointment twice a day for 4 weeks. The physician's assessment of the degree of pigment clearance and patient's satisfaction were assessed after 4 and 8 weeks. Additionally, the melanin index (MI), erythema index (EI), transepidermal water loss (TEWL), and post-inflammatory hyperpigmentation (PIH) were evaluated. This trial was registered with ClinicalTrials.gov (NCT04704245). Results: The blinded physician's assessment using 5-grade percentage improvement scale and patient's satisfaction were significantly higher in the study group than in the control group at the 4th and 8th weeks. The MI was significantly higher in the control group than in the study group at the 4th and 8th weeks. The EI and TEWL did not differ significantly between the two groups at either time point. The incidence of PIH was higher in the control group (37.5%) than in the EGF group (7.14%) at the 8th week. Conclusions: The application of EGF-containing ointment on facial solar lentigines with a QS 532 nm Nd:YAG laser showed efficient and safe therapeutic effects, with less PIH. Thus, EGF-containing ointment could be suggested as the promising adjuvant treatment strategy with a QS laser for solar lentigines.

Keywords: Q-switched 532 nm Nd:YAG laser; epidermal growth factor; pigmentary disorder; post-inflammatory hyperpigmentation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of the study participant inclusion. A total of 40 subjects (20 in the study group and 20 in the control group) were enrolled in this study, and 30 (14 in the study group and 16 in the control group) completed all clinical evaluations (excluding those who were lost to follow-up).
Figure 2
Figure 2
(A) Assessment of the 5-grade scale for improvement by a physician at 4 weeks. (B) Assessment of the 5-grade scale for improvement by a physician at 8 weeks.
Figure 3
Figure 3
Clinical photographs of the patients in the study group (grade 5 improvement). (A) Before treatment in the study group. (B) At 8 weeks in the study group. Red circles; treated areas.
Figure 4
Figure 4
Clinical photographs of the patients in the control group (grade 2 improvement). (A) Before treatment in the control group. (B) At 8 weeks in the control group. Red circles; treated areas.
Figure 5
Figure 5
(A) Melanin index (MI) at baseline and follow-up observation. At weeks 4 and 8, the control group showed significantly higher MI than the study group. * p < 0.05 compared with the control group. (B) Erythema index (EI) at baseline and follow-up observation. The EI measured at week 8 showed no significant difference between the groups (p = 0.968). Both the study group (p = 0.941) and control group (p = 0.405) showed no significant difference between the baseline and 8-week EI values. (C) Transepidermal water loss (TEWL) at baseline and follow-up observation. For TEWL, there was no significant difference between the study and control groups at the last visit (p = 0.862). Both the study group (p = 0.911) and control group (p = 0.577) showed no significant difference between the baseline and 8-week TEWL values.

References

    1. Ortonne J.P., Pandya A.G., Lui H., Hexsel D. Treatment of solar lentigines. J. Am. Acad. Dermatol. 2006;54:S262–S271. doi: 10.1016/j.jaad.2005.12.043.
    1. Ortonne J.P. Pigmentary changes of the ageing skin. Br. J. Dermatol. 1990;122(Suppl. 35):21–28. doi: 10.1111/j.1365-2133.1990.tb16121.x.
    1. Hüls A., Vierkötter A., Gao W., Krämer U., Yang Y., Ding A., Stolz S., Matsui M., Kan H., Wang S., et al. Traffic-Related Air Pollution Contributes to Development of Facial Lentigines: Further Epidemiological Evidence from Caucasians and Asians. J. Invest. Dermatol. 2016;136:1053–1056. doi: 10.1016/j.jid.2015.12.045.
    1. Hattori H., Kawashima M., Ichikawa Y., Imokawa G. The epidermal stem cell factor is over-expressed in lentigo senilis: Implication for the mechanism of hyperpigmentation. J. Investig. Dermatol. 2004;122:1256–1265. doi: 10.1111/j.0022-202X.2004.22503.x.
    1. Sarkar R., Arora P., Garg K.V. Cosmeceuticals for Hyperpigmentation: What is Available? J. Cutan. Aesthet. Surg. 2013;6:4–11. doi: 10.4103/0974-2077.110089.
    1. Bukvić Mokos Z., Lipozenčić J., Ceović R., Stulhofer Buzina D., Kostović K. Laser therapy of pigmented lesions: Pro and contra. Acta Dermatol. Croat. 2010;18:185–189.
    1. Cameli N., Abril E., Agozzino M., Mariano M. Clinical and instrumental evaluation of the efficacy of a new depigmenting agent containing a combination of a retinoid, a phenolic agent and an antioxidant for the treatment of solar lentigines. Dermatology. 2015;230:360–366. doi: 10.1159/000379746.
    1. Farris P.K. Combination therapy for solar lentigines. J. Drugs Dermatol. 2004;3:S23–S26.
    1. Negishi K., Akita H., Tanaka S., Yokoyama Y., Wakamatsu S., Matsunaga K. Comparative study of treatment efficacy and the incidence of post-inflammatory hyperpigmentation with different degrees of irradiation using two different quality-switched lasers for removing solar lentigines on Asian skin. J. Eur. Acad. Dermatol. Venereol. 2013;27:307–312. doi: 10.1111/j.1468-3083.2011.04385.x.
    1. Anderson R.R., Margolis R.J., Watenabe S., Flotte T., Hruza G.J., Dover J.S. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm. J. Investig. Dermatol. 1989;93:28–32. doi: 10.1111/1523-1747.ep12277339.
    1. Sadighha A., Saatee S., Muhaghegh-Zahed G. Efficacy and adverse effects of Q-switched ruby laser on solar lentigines: A prospective study of 91 patients with Fitzpatrick skin type II, III, and IV. Dermatol. Surg. 2008;34:1465–1468. doi: 10.1097/00042728-200811000-00005.
    1. Park G.H., do Rhee Y., Moon H.R., Won C.H., Lee M.W., Choi J.H., Moon K.C., Chang S.E. Effect of an epidermal growth factor-containing cream on postinflammatory hyperpigmentation after Q-switched 532-nm neodymium-doped yttrium aluminum garnet laser treatment. Dermatol. Surg. 2015;41:131–135. doi: 10.1097/DSS.0000000000000197.
    1. Yun W.J., Bang S.H., Min K.H., Kim S.W., Lee M.W., Chang S.E. Epidermal growth factor and epidermal growth factor signaling attenuate laser-induced melanogenesis. Dermatol. Surg. 2013;39:1903–1911. doi: 10.1111/dsu.12348.
    1. Williams F.N., Herndon D.N. Metabolic and Endocrine Considerations After Burn Injury. Clin. Plast Surg. 2017;44:541–553. doi: 10.1016/j.cps.2017.02.013.
    1. Valenzuela-Silva C.M., Tuero-Iglesias Á.D., García-Iglesias E., González-Díaz O., Del Río-Martín A., Yera Alos I.B., Fernández-Montequín J.I., López-Saura P.A. Granulation response and partial wound closure predict healing in clinical trials on advanced diabetes foot ulcers treated with recombinant human epidermal growth factor. Diabetes Care. 2013;36:210–215. doi: 10.2337/dc12-1323.
    1. García-Ojalvo A., Berlanga Acosta J., Figueroa-Martínez A., Béquet-Romero M., Mendoza-Marí Y., Fernández-Mayola M., Fabelo-Martínez A., Guillén-Nieto G. Systemic translation of locally infiltrated epidermal growth factor in diabetic lower extremity wounds. Int. Wound J. 2019;16:1294–1303. doi: 10.1111/iwj.13189.
    1. Savory S.A., Agim N.G., Mao R., Peter S., Wang C., Maldonado G., Bearden Dietert J., Lieu T.J., Wang C., Pretzlaff K., et al. Reliability assessment and validation of the postacne hyperpigmentation index (PAHPI), a new instrument to measure postinflammatory hyperpigmentation from acne vulgaris. J. Am. Acad. Dermatol. 2014;70:108–114. doi: 10.1016/j.jaad.2013.09.017.
    1. Sotoodian B., Maibach H.I. Noninvasive test methods for epidermal barrier function. Clin. Dermatol. 2012;30:301–310. doi: 10.1016/j.clindermatol.2011.08.016.
    1. Roskos K.V., Guy R.H. Assessment of skin barrier function using transepidermal water loss: Effect of age. Pharm. Res. 1989;6:949–953. doi: 10.1023/A:1015941412620.
    1. Praetorius C., Sturm R.A., Steingrimsson E. Sun-induced freckling: Ephelides and solar lentigines. Pigment. Cell Melanoma Res. 2014;27:339–350. doi: 10.1111/pcmr.12232.
    1. Schallreuter K.U., Kothari S., Chavan B., Spencer J.D. Regulation of melanogenesis—Controversies and new concepts. Exp. Dermatol. 2008;17:395–404. doi: 10.1111/j.1600-0625.2007.00675.x.
    1. Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment. Cell Res. 2004;17:96–110. doi: 10.1111/j.1600-0749.2003.00126.x.
    1. Kovacs D., Cardinali G., Aspite N., Cota C., Luzi F., Bellei B., Briganti S., Amantea A., Torrisi M.R., Picardo M. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. Br. J. Dermatol. 2010;163:1020–1027. doi: 10.1111/j.1365-2133.2010.09946.x.
    1. Lin C.B., Hu Y., Rossetti D., Chen N., David C., Slominski A., Seiberg M. Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development. J. Dermatol. Sci. 2010;59:91–97. doi: 10.1016/j.jdermsci.2010.06.006.
    1. Chen N., Hu Y., Li W.H., Eisinger M., Seiberg M., Lin C.B. The role of keratinocyte growth factor in melanogenesis: A possible mechanism for the initiation of solar lentigines. Exp. Dermatol. 2010;19:865–872. doi: 10.1111/j.1600-0625.2009.00957.x.
    1. Ishikawa Y., Niwano T., Hirano S., Numano K., Takasima K., Imokawa G. Whitening effect of L-ascorbate-2-phosphate trisodium salt on solar lentigos. Arch. Dermatol. Res. 2019;311:183–191. doi: 10.1007/s00403-019-01892-2.
    1. Draelos Z.D. The combination of 2% 4-hydroxyanisole (mequinol) and 0.01% tretinoin effectively improves the appearance of solar lentigines in ethnic groups. J. Cosmet. Dermatol. 2006;5:239–244. doi: 10.1111/j.1473-2165.2006.00260.x.
    1. Grippaudo F.R., Di Russo P.P. Effects of topical application of B-Resorcinol and Glycyrrhetinic acid monotherapy and in combination with fractional CO(2) laser treatment for benign hand hyperpigmentation treatment. J. Cosmet. Dermatol. 2016;15:413–419. doi: 10.1111/jocd.12241.
    1. Campanati A., Giannoni M., Scalise A., De Blasio S., Giuliano A., Giuliodori K., Ganzetti G., Bolletta E., Di Benedetto G., Offidani A. Efficacy and Safety of Topical Pidobenzone 4% as Adjuvant Treatment for Solar Lentigines: Result of a Randomized, Controlled, Clinical Trial. Dermatology. 2016;232:478–483. doi: 10.1159/000447356.
    1. Tokumaru S., Higashiyama S., Endo T., Nakagawa T., Miyagawa J.I., Yamamori K., Hanakawa Y., Ohmoto H., Yoshino K., Shirakata Y., et al. Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J. Cell Biol. 2000;151:209–220. doi: 10.1083/jcb.151.2.209.
    1. Dogan S., Demirer S., Kepenekci I., Erkek B., Kiziltay A., Hasirci N., Müftüoglu S., Nazikoglu A., Renda N., Dincer U.D., et al. Epidermal growth factor-containing wound closure enhances wound healing in non-diabetic and diabetic rats. Int. Wound J. 2009;6:107–115. doi: 10.1111/j.1742-481X.2009.00584.x.
    1. Kondo S., Kuroyanagi Y. Development of a wound dressing composed of hyaluronic acid and collagen sponge with epidermal growth factor. J. Biomater. Sci. Polym. Ed. 2012;23:629–643. doi: 10.1163/092050611X555687.
    1. Raja S.K., Garcia M.S., Isseroff R.R. Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Front. Biosci. 2007;12:2849–2868. doi: 10.2741/2277.
    1. Starner R.J., McClelland L., Abdel-Malek Z., Fricke A., Scott G. PGE(2) is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation. Exp. Dermatol. 2010;19:682–684. doi: 10.1111/j.1600-0625.2010.01074.x.
    1. Roméro-Graillet C., Aberdam E., Biagoli N., Massabni W., Ortonne J.P., Ballotti R. Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J. Biol. Chem. 1996;271:28052–28056. doi: 10.1074/jbc.271.45.28052.
    1. Vachiramon V., Iamsumang W., Triyangkulsri K. Q-switched double frequency Nd:YAG 532-nm nanosecond laser vs. double frequency Nd:YAG 532-nm picosecond laser for the treatment of solar lentigines in Asians. Lasers Med. Sci. 2018;33:1941–1947. doi: 10.1007/s10103-018-2560-3.
    1. Stratigos A.J., Dover J.S., Arndt K.A. Laser treatment of pigmented lesions--2000: How far have we gone? Arch. Dermatol. 2000;136:915–921. doi: 10.1001/archderm.136.7.915.
    1. Ho S.G., Chan N.P., Yeung C.K., Shek S.Y., Kono T., Chan H.H. A retrospective analysis of the management of freckles and lentigines using four different pigment lasers on Asian skin. J. Cosmet. Laser. 2012;14:74–80. doi: 10.3109/14764172.2012.670707.
    1. Kang H.J., Na J.I., Lee J.H., Roh M.R., Ko J.Y., Chang S.E. Postinflammatory hyperpigmentation associated with treatment of solar lentigines using a Q-Switched 532-nm Nd: YAG laser: A multicenter survey. J. Dermatol. Treat. 2017;28:447–451. doi: 10.1080/09546634.2016.1254330.
    1. Wang C.C., Sue Y.M., Yang C.H., Chen C.K. A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial. J. Am. Acad. Dermatol. 2006;54:804–810. doi: 10.1016/j.jaad.2006.01.012.
    1. Rutnin S., Pruettivorawongse D., Thadanipon K., Vachiramon V. A Prospective Randomized Controlled Study of Oral Tranexamic Acid for the Prevention of Postinflammatory Hyperpigmentation After Q-Switched 532-nm Nd:YAG Laser for Solar Lentigines. Lasers Surg Med. 2019;51:850–858. doi: 10.1002/lsm.23135.
    1. Lee S.J., Kim H., Kim H.S. Topical Brimonidine Tartrate 0.33% Gel on Postlaser Erythema: Our Experience and Review of the Literature. Dermatol. Surg. 2018;44:144–147. doi: 10.1097/DSS.0000000000001389.
    1. West T.B., Alster T.S. Effect of pretreatment on the incidence of hyperpigmentation following cutaneous CO2 laser resurfacing. Dermatol. Surg. 1999;25:15–17. doi: 10.1046/j.1524-4725.1999.08123.x.

Source: PubMed

3
購読する