이 페이지는 자동 번역되었으며 번역의 정확성을 보장하지 않습니다. 참조하십시오 영문판 원본 텍스트의 경우.

Effect of Pretreatment of Lignocaine Versus Midazolam in Prevention of Etomidate Induced Myoclonus.

2021년 6월 8일 업데이트: FIZZA BATOOL, Rawalpindi Medical College

Effect of Pretreatment of Lignocaine Versus Midazolam in the Prevention of Etomidate Induced Myoclonus

This study is a randomized control trial and it was conducted to compare the effectiveness of pretreatment with lignocaine versus midazolam on the frequency of myoclonus associated with etomidate induction.

This was conducted in Holy Family Hospital Rawalpindi in a period of 6 months.

연구 개요

상세 설명

INTRODUCTION:

General anaesthesia is loss of consciousness induced after administration of one or more general anaesthetic agent with overall aim of inducing sleep, amnesia, analgesia and skeletal muscles relaxation. Choosing an induction agent is a very vital step in commencing general anaesthesia1. Use of sedatives can prevent or minimize potentially harmful physiologic affects of airway manipulation that include increase in heart rate, BP, and raised intracranial pressure.

Etomidate, imidazole-derived, sedative-hypnotic agent, blocks neuroexcitation by its direct action on the gamma amino butyric acid (GABA) receptor complex1.Because of its many desirable properties like rapid onset of action, profound hypnosis, minimal histamine release, hemodynamic stability, minimal respiratory depression, and favorable cerebral effects, etomidate is considered as an ideal induction agent2. Concerns with etomidate include adrenal suppression and myoclonus3, 4.

30 to 60% of unpremedicated patients develop myoclonic movements after an induction dose (0.3 mg/kg) of etomidate1. Myoclonus is described as the involuntary contraction of some muscle fibers, leading to short observable movements of the body, more pronounced with the limbs5. In emergency scenarios, myoclonus can lead to increment in the chances of regurgitation and aspiration.

Various drugs like Lignocaine, Midazolam, Magnesium, Dezocine and dexmedetomidine have been used as pretreatment for reducing myoclonus after etomidate injection but the best drug for the purpose is yet to be discovered6, 7, 8, 9. Ideally a pretreatment drug should be short-acting, should affect respiration and hemodynamic minimally, and should not prolong the recovery period.

Lignocaine belongs to amide group of local anaesthetics.Lignocaine alters signal conduction in neuronal cell membrane8. Various studies have been conducted on lignocaine being used as a pretreatment drug; before propofol induction to reduce pain or etomidate to prevent myoclonus associated with etomidateinduction6.

Midazolam, a benzodiazepine, produce a calming effect on the brain and nerves 1, 10. Its various favorable effects include antiepileptic properties, anxiolysis, sedation, reduced attention and amnesia7. In a comparative study conducted by Singh KA (initials for first and second name of the author) et al, effect of pretreatment with lignocaine, midazolam and placebo were compared in prevention of etomidate induced myoclonus and the incidence was found to be 44%, 28% and 76% respectively5 (P<0.05). However, none of these studies have been conducted in Pakistan. The basic aim of my study is to compare the effectiveness of pretreatment with Lignocaine versus Midazolam on the frequency of myoclonus associated with etomidate induction, generate data regarding the effects, so that the more effective drug can be used routinely for the prevention of myoclonus associated with etomidate induction in routine.

METHODOLOGY:

After obtaining approval from the hospital ethics committee and written informed consent, 112 patient were recruited according to selection criteria in each group. All patients were assessed a day before surgery for anaesthesia fitness. Patient were prepared by fasting (8 h for solid foods, 4 hours for clear fluids).Patient were randomly divided into two equal groups by computer-generated numbers.

Group A received 1 ml of 2% lignocaine 2 min before induction with etomidate and Group B received 1 ml (1mg) of midazolam 2 min before induction with etomidate. On reaching the operating theater, standard monitoring were placed on all the participants, which included pulse oximeter, ECG and non-invasive blood pressure. A 20 G cannula with an intravenous line was maintained with 0.9% saline. Vitals such as pulse rate, blood pressure, respiratory rate, and oxygen saturation were recorded and taken as baseline readings. All patients were then preoxygenated with 100% oxygen for 3 min. Patients were divided randomly into two groups of 112 using computer generated random numbers. Group I received 1 ml of 2% lignocaine, and group II received 1 ml of midazolam (1 mg). The test solutions were prepared in coded syringes and were administered 2 min before etomidate induction (0.3 mg/kg) by an observer who was blinded to the allocation of the groups as well as the drug given to him. The time to the loss of eyelash reflex was recorded as the onset of induction, and an additional dose of etomidate was administered if necessary. The patients were observed continuously for myoclonic movements. The time of onset and the duration of myoclonus was observed. One minute post IV injection of etomidate and the observation of myoclonus, 0.5 mg/kg succinylcholine was administered to allow endotracheal tube placement. The vitals were observed after administration of test solution, after induction, and after endotracheal intubation every minute for five minutes, then every five minutes for fifteen minutes, and then every fifteen minutes till the surgery ends. Anesthesia was maintained with isoflurane (0.5-1%) and atracurium.

Data was collected on a standardized Proforma and analyze using SPSS-17 version (Statistical package for the social sciences). Mean ± SD (standard deviation) was calculated for quantitative variables lik age, weight and BMI. Qualitative variables like gender, myoclonus wer expressed as frequencies and percentages. Chi-square was used to compare th frequency of myoclonus in two groups. A P value less than 0.05 was consider statistically significant. Effect modifiers like age and gender were controlled b stratification. Post-stratification Chi-square test was applied.

연구 유형

중재적

등록 (실제)

224

단계

  • 4단계

참여기준

연구원은 적격성 기준이라는 특정 설명에 맞는 사람을 찾습니다. 이러한 기준의 몇 가지 예는 개인의 일반적인 건강 상태 또는 이전 치료입니다.

자격 기준

공부할 수 있는 나이

20년 (성인)

건강한 자원 봉사자를 받아들입니다

연구 대상 성별

모두

설명

Inclusion Criteria:

  • ASA-I / ASA-II
  • any gender >20-45 years
  • undergoing elective surgical procedure.

Exclusion Criteria:

  • Patient who refused
  • those with any neurological or psychiatric disorders
  • morbid obesity
  • drug allergies
  • pregnant patients

공부 계획

이 섹션에서는 연구 설계 방법과 연구가 측정하는 내용을 포함하여 연구 계획에 대한 세부 정보를 제공합니다.

연구는 어떻게 설계됩니까?

디자인 세부사항

  • 주 목적: 방지
  • 할당: 무작위
  • 중재 모델: 병렬 할당
  • 마스킹: 더블

무기와 개입

참가자 그룹 / 팔
개입 / 치료
활성 비교기: Group Lignocaine
Group of 112 patients ASA-I and II (American Society of Anesthesiology)ages from 25-44 undergoing elective surgical procedure.
After giving lignocaine to a group of people, myoclonus was observed after the dose of etomidate given two minutes after lignocaine.
다른 이름들:
  • 2% lignocaine 1 ml
활성 비교기: Group Midazolam
Group of 112 patients ASA-I and II ages from 25-44 undergoing elective surgical procedure.
after giving midazolam to the second group of people two minutes before etomidate dose, myoclonus was observed for one minute.
다른 이름들:
  • 기숙사

연구는 무엇을 측정합니까?

주요 결과 측정

결과 측정
측정값 설명
기간
Occurrence and Frequency of Myoclonus
기간: Immediately after giving etomidate dose.
involuntary contracting muscle fibers leading to short observable movements more pronounced with the limbs measured by observation by an observer.
Immediately after giving etomidate dose.
Occurrence and Frequency of Myoclonus
기간: 20 seconds after giving etomidate dose.
involuntary contracting muscle fibers leading to short observable movements more pronounced with the limbs measured by observation by an observer.
20 seconds after giving etomidate dose.
Occurrence and Frequency of Myoclonus
기간: 40 seonds after giving etomidate dose.
involuntary contracting muscle fibers leading to short observable movements more pronounced with the limbs measured by observation by an observer.
40 seonds after giving etomidate dose.
Occurrence and Frequency of Myoclonus
기간: 60 seconds after giving etomidate dose.
involuntary contracting muscle fibers leading to short observable movements more pronounced with the limbs measured by observation by an observer.
60 seconds after giving etomidate dose.

공동 작업자 및 조사자

여기에서 이 연구와 관련된 사람과 조직을 찾을 수 있습니다.

수사관

  • 수석 연구원: Fizza Batool, FCPS, Rawalpindi Medical College

간행물 및 유용한 링크

연구에 대한 정보 입력을 담당하는 사람이 자발적으로 이러한 간행물을 제공합니다. 이것은 연구와 관련된 모든 것에 관한 것일 수 있습니다.

일반 간행물

연구 기록 날짜

이 날짜는 ClinicalTrials.gov에 대한 연구 기록 및 요약 결과 제출의 진행 상황을 추적합니다. 연구 기록 및 보고된 결과는 공개 웹사이트에 게시되기 전에 특정 품질 관리 기준을 충족하는지 확인하기 위해 국립 의학 도서관(NLM)에서 검토합니다.

연구 주요 날짜

연구 시작 (실제)

2015년 1월 1일

기본 완료 (실제)

2015년 6월 30일

연구 완료 (실제)

2015년 6월 30일

연구 등록 날짜

최초 제출

2021년 5월 27일

QC 기준을 충족하는 최초 제출

2021년 6월 8일

처음 게시됨 (실제)

2021년 6월 10일

연구 기록 업데이트

마지막 업데이트 게시됨 (실제)

2021년 6월 10일

QC 기준을 충족하는 마지막 업데이트 제출

2021년 6월 8일

마지막으로 확인됨

2021년 6월 1일

추가 정보

이 연구와 관련된 용어

개별 참가자 데이터(IPD) 계획

개별 참가자 데이터(IPD)를 공유할 계획입니까?

아니요

약물 및 장치 정보, 연구 문서

미국 FDA 규제 의약품 연구

아니

미국 FDA 규제 기기 제품 연구

아니

미국에서 제조되어 미국에서 수출되는 제품

아니

이 정보는 변경 없이 clinicaltrials.gov 웹사이트에서 직접 가져온 것입니다. 귀하의 연구 세부 정보를 변경, 제거 또는 업데이트하도록 요청하는 경우 register@clinicaltrials.gov. 문의하십시오. 변경 사항이 clinicaltrials.gov에 구현되는 즉시 저희 웹사이트에도 자동으로 업데이트됩니다. .

3
구독하다