High Intensity Interval- vs Moderate Intensity- Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial

Gordon Fisher, Andrew W Brown, Michelle M Bohan Brown, Amy Alcorn, Corey Noles, Leah Winwood, Holly Resuehr, Brandon George, Madeline M Jeansonne, David B Allison, Gordon Fisher, Andrew W Brown, Michelle M Bohan Brown, Amy Alcorn, Corey Noles, Leah Winwood, Holly Resuehr, Brandon George, Madeline M Jeansonne, David B Allison

Abstract

Purpose: To compare the effects of six weeks of high intensity interval training (HIIT) vs continuous moderate intensity training (MIT) for improving body composition, insulin sensitivity (SI), blood pressure, blood lipids, and cardiovascular fitness in a cohort of sedentary overweight or obese young men. We hypothesized that HIIT would result in similar improvements in body composition, cardiovascular fitness, blood lipids, and SI as compared to the MIT group, despite requiring only one hour of activity per week compared to five hours per week for the MIT group.

Methods: 28 sedentary overweight or obese men (age, 20 ± 1.5 years, body mass index 29.5 ± 3.3 kg/m2) participated in a six week exercise treatment. Participants were randomly assigned to HIIT or MIT and evaluated at baseline and post-training. DXA was used to assess body composition, graded treadmill exercise test to measure cardiovascular fitness, oral glucose tolerance to measure SI, nuclear magnetic resonance spectroscopy to assess lipoprotein particles, and automatic auscultation to measure blood pressure.

Results: A greater improvement in VO2peak was observed in MIT compared to HIIT (11.1% vs 2.83%, P = 0.0185) in the complete-case analysis. No differences were seen in the intention to treat analysis, and no other group differences were observed. Both exercise conditions were associated with temporal improvements in % body fat, total cholesterol, medium VLDL, medium HDL, triglycerides, SI, and VO2peak (P < 0.05).

Conclusion: Participation in HIIT or MIT exercise training displayed: 1) improved SI, 2) reduced blood lipids, 3) decreased % body fat, and 4) improved cardiovascular fitness. While both exercise groups led to similar improvements for most cardiometabolic risk factors assessed, MIT led to a greater improvement in overall cardiovascular fitness. Overall, these observations suggest that a relatively short duration of either HIIT or MIT training may improve cardiometabolic risk factors in previously sedentary overweight or obese young men, with no clear advantage between these two specific regimes (Clinical Trial Registry number NCT01935323).

Trial registration: ClinicalTrials.gov NCT01935323.

Conflict of interest statement

Competing Interests: Drs. Fisher, Brown and Bohan Brown report receiving grant support from the Coca-Cola Foundation through their institution. Dr. Allison reports serving as an unpaid board member for the International Life Sciences Institute of North America; receiving payment for board membership from Kraft Foods; receiving consulting fees from Vivus, Ulmer and Berne, Paul, Weiss, Rifkind, Wharton, Garrison, Chandler Chicco, Arena Pharmaceuticals, Pfizer, National Cattlemen's Association, Mead Johnson Nutrition, Frontiers Foundation, Orexigen Therapeutics, and Jason Pharmaceuticals; receiving lecture fees from Porter Novelli and the Almond Board of California; receiving payment for manuscript preparation from Vivus; receiving travel reimbursement from International Life Sciences Institute of North America; receiving other support from the United Soybean Board and the Northarvest Bean Growers Association; receiving grant support through his institution from Wrigley, Kraft Foods, Coca-Cola, Vivus, Jason Pharmaceuticals, Aetna Foundation, and McNeil Nutritionals; and receiving other funding through his institution from the Coca-Cola Foundation, Coca-Cola, PepsiCo, Red Bull, World Sugar Research Organisation, Archer Daniels Midland, Mars, Eli Lilly and Company, and Merck. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Consort Flow Diagram of Study.
Fig 1. Consort Flow Diagram of Study.

References

    1. Gregg EW, Cheng YJ, Cadwell BL, Imperatore G, Williams DE, Flegal KM, et al. Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA. 2005;293(15):1868–74. 10.1001/jama.293.15.1868 .
    1. Han J, Lawlor D, Kimm S. Childhood obesity. Lancet. 2010;375(9727):1737–48. doi: S0140-6736(10)60171-7 [pii] 10.1016/S0140-6736(10)60171-7 .
    1. Webber LS, Wattigney WA, Srinivasan SR, Berenson GS. Obesity studies in Bogalusa. Am J Med Sci. 1995;310 Suppl 1:S53–61. .
    1. van Lenthe FJ, van Mechelen W, Kemper HC, Twisk JW. Association of a central pattern of body fat with blood pressure and lipoproteins from adolescence into adulthood. The Amsterdam Growth and Health Study. Am J Epidemiol. 1998;147(7):686–93. .
    1. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA. 1988;260(13):1917–21. .
    1. Lamarche B, Després JP, Moorjani S, Cantin B, Dagenais GR, Lupien PJ. Triglycerides and HDL-cholesterol as risk factors for ischemic heart disease. Results from the Québec cardiovascular study. Atherosclerosis. 1996;119(2):235–45. .
    1. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. Triglyceride concentration and ischemic heart disease: an eight-year follow-up in the Copenhagen Male Study. Circulation. 1998;97(11):1029–36. .
    1. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;122(16):1637–48. 10.1161/CIRCULATIONAHA.110.948349 .
    1. Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults' participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34(12):1996–2001. 10.1249/01.MSS.0000038974.76900.92 .
    1. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60. doi: jphysiol.2007.142109 [pii] 10.1113/jphysiol.2007.142109
    1. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11. doi: jphysiol.2006.112094 [pii] 10.1113/jphysiol.2006.112094
    1. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(Pt 5):1077–84. 10.1113/jphysiol.2011.224725
    1. Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes (Lond). 2008;32(4):684–91. 10.1038/sj.ijo.0803781 .
    1. Hazell TJ, Hamilton CD, Olver TD, Lemon PW. Running sprint interval training induces fat loss in women. Appl Physiol Nutr Metab. 2014;39(8):944–50. 10.1139/apnm-2013-0503 .
    1. Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc. 2011;43(1):115–22. 10.1249/MSS.0b013e3181e5eacd .
    1. Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59(10):1421–8. 10.1016/j.metabol.2010.01.002 .
    1. Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JM, Guimarães GV. Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertens Res. 2010;33(8):836–43. 10.1038/hr.2010.72 .
    1. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54. 10.1161/CIRCULATIONAHA.108.772822
    1. Chan-Dewar F, Kong Z, Shi Q, Nie J. Short sprints (30s) attenuate post-prandial blood glucose in young healthy males. Prim Care Diabetes. 2015. 10.1016/j.pcd.2015.01.013 .
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. .
    1. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10. 10.1210/jcem.85.7.6661 .
    1. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26(4):847–70. 10.1016/j.cll.2006.07.006 .
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. .
    1. Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol. 2010;110(1):153–60. 10.1007/s00421-010-1474-y .
    1. Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, et al. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc. 2010;42(10):1951–8. 10.1249/MSS.0b013e3181d99203 .
    1. Wallman K, Plant LA, Rakimov B, Maiorana AJ. The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. Res Sports Med. 2009;17(3):156–70. 10.1080/15438620903120215 .
    1. Sloth M, Sloth D, Overgaard K, Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand J Med Sci Sports. 2013;23(6):e341–52. 10.1111/sms.12092 .
    1. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127(5):652–62. 10.1161/CIR.0b013e31827ee100 .
    1. Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2011;124(23):2483–90. 10.1161/CIRCULATIONAHA.111.038422
    1. Wallberg-Henriksson H, Holloszy JO. Contractile activity increases glucose uptake by muscle in severely diabetic rats. J Appl Physiol. 1984;57(4):1045–9. .
    1. Richter EA, Mikines KJ, Galbo H, Kiens B. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol (1985). 1989;66(2):876–85. .
    1. Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol (1985). 2004;96(1):101–6. 10.1152/japplphysiol.00707.2003 .
    1. Bajpeyi S, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Hickner RC, et al. Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. J Appl Physiol (1985). 2009;106(4):1079–85. 10.1152/japplphysiol.91262.2008
    1. Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring). 2013;21(11):2249–55. 10.1002/oby.20379 .
    1. Brandão Rondon MU, Alves MJ, Braga AM, Teixeira OT, Barretto AC, Krieger EM, et al. Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol. 2002;39(4):676–82. .
    1. Musa DI, Adeniran SA, Dikko AU, Sayers SP. The effect of a high-intensity interval training program on high-density lipoprotein cholesterol in young men. J Strength Cond Res. 2009;23(2):587–92. 10.1519/JSC.0b013e318198fd28 .
    1. Aronis KN, Mantzoros CS. Novel concepts in lipoprotein particle metabolism and regulation. Metabolism. 2014;63(1):1–4. 10.1016/j.metabol.2013.08.002 .
    1. Rye KA, Barter PJ. Predictive value of different HDL particles for the protection against or risk of coronary heart disease. Biochim Biophys Acta. 2012;1821(3):473–80. 10.1016/j.bbalip.2011.10.012 .
    1. Cromwell WC, Otvos JD. Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep. 2004;6(5):381–7. .
    1. Warburton DE, McKenzie DC, Haykowsky MJ, Taylor A, Shoemaker P, Ignaszewski AP, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 2005;95(9):1080–4. 10.1016/j.amjcard.2004.12.063 .
    1. Aamot IL, Karlsen T, Dalen H, Støylen A. Long-term Exercise Adherence After High-intensity Interval Training in Cardiac Rehabilitation: A Randomized Study. Physiother Res Int. 2015. 10.1002/pri.1619 .

Source: PubMed

3
구독하다