Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes

David Polidori, Andrea Mari, Ele Ferrannini, David Polidori, Andrea Mari, Ele Ferrannini

Abstract

Aims/hypothesis: In rodent models of diabetes, treatment with sodium glucose co-transporter 2 (SGLT2) inhibitors improves beta cell function. This analysis assessed the effects of the SGLT2 inhibitor, canagliflozin, on model-based measures of beta cell function in patients with type 2 diabetes.

Methods: Data from three Phase 3 studies were analysed, in which: (Study 1) canagliflozin 100 and 300 mg were compared with placebo as monotherapy for 26 weeks; (Study 2) canagliflozin 100 and 300 mg were compared with placebo as add-on to metformin + sulfonylurea for 26 weeks; or (Study 3) canagliflozin 300 mg was compared with sitagliptin 100 mg as add-on to metformin + sulfonylurea for 52 weeks. In each study, a subset of patients was given mixed-meal tolerance tests at baseline and study endpoint, and model-based beta cell function parameters were calculated from plasma glucose and C-peptide.

Results: In Studies 1 and 2, both canagliflozin doses increased beta cell glucose sensitivity compared with placebo. Placebo-subtracted least squares mean (LSM) (SEM) changes were 23 (9) and 18 (9) pmol min(-1) m(-2) (mmol/l)(-1) with canagliflozin 100 and 300 mg, respectively (p < 0.002, Study 1), and 16 (8) and 10 (9) pmol min(-1) m(-2) (mmol/l)(-1) (p < 0.02, Study 2). In Study 3, beta cell glucose sensitivity was minimally affected, but the insulin secretion rate at 9 mmol/l glucose increased to similar degrees from baseline with canagliflozin and sitagliptin [LSM (SEM) changes 38 (8) and 28 (9) pmol min(-1) m(-2), respectively; p < 0.05 for both].

Conclusions/interpretation: Treatment with canagliflozin for 6 to 12 months improved model-based measures of beta cell function in three separate Phase 3 studies.

Trial registration: Clinicaltrials.gov NCT01081834 (Study 1); NCT01106625 (Study 2); NCT01137812 (Study 3).

Figures

Fig. 1
Fig. 1
Baseline (pretreatment) relationship between insulin secretion and plasma glucose concentrations (Studies 1 to 3). Black circles, untreated (Study 1; n = 193); white circles, metformin + sulfonylurea (Study 2; n = 163); white diamonds, metformin + sulfonylurea (Study 3; n = 234). Values are mean ± SEM and include all patients studied at the baseline visit in each study
Fig. 2
Fig. 2
(a–c) Plasma glucose, (d–f) C-peptide and (g–i) insulin concentrations, and (j–l) ISR per plasma glucose values in Study 1. Black circles, baseline; white circles, Week 26. Values are mean ± SEM for placebo (a, d, g, j), canagliflozin 100 mg (b, e, h, k) and canagliflozin 300 mg (c, f, i, l)
Fig. 3
Fig. 3
(a–c) Plasma glucose, (d–f) C-peptide and (g–i) insulin concentrations, and (j–l) ISR per plasma glucose values in Study 2. Black circles, baseline; white circles, Week 26. Values are mean ± SEM for placebo (a, d, g, j), canagliflozin 100 mg (b, e, h, k) and canagliflozin 300 mg (c, f, i, l)
Fig. 4
Fig. 4
(a, b) Plasma glucose, (c, d) C-peptide and (e, f) insulin concentrations, and (g, h) ISR per plasma glucose in Study 3. Black circles, baseline; white circles, Week 52. Values are mean ± SEM for sitagliptin 100 mg (a, c, e, g) and canagliflozin 300 mg (b, d, f, h)

References

    1. Kahn SE. Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001;86:4047–4058.
    1. Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, Defronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab. 2005;90:493–500. doi: 10.1210/jc.2004-1133.
    1. Jabbour S. Primary care physicians and insulin initiation: multiple barriers, lack of knowledge or both? Int J Clin Pract. 2008;62:845–847. doi: 10.1111/j.1742-1241.2008.01757.x.
    1. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2012;35:1364–1379. doi: 10.2337/dc12-0413.
    1. Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36:2154–2161. doi: 10.2337/dc12-2391.
    1. Polidori D, Sha S, Ghosh A, Plum-Morschel L, Heise T, Rothenberg P. Validation of a novel method for determining the renal threshold for glucose excretion in untreated and canagliflozin-treated subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98:E867–E871. doi: 10.1210/jc.2012-4205.
    1. Rossetti L, Shulman GI, Zawalich W, Defronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest. 1987;80:1037–1044. doi: 10.1172/JCI113157.
    1. Nunoi K, Yasuda K, Adachi T, et al. Beneficial effect of T-1095, a selective inhibitor of renal Na+-glucose cotransporters, on metabolic index and insulin secretion in spontaneously diabetic GK rats. Clin Exp Pharmacol Physiol. 2002;29:386–390. doi: 10.1046/j.1440-1681.2002.03671.x.
    1. Katsuno K, Fujimori Y, Ishikawa-Takemura Y, Isaji M. Long-term treatment with sergliflozin etabonate improves disturbed glucose metabolism in KK-A(y) mice. Eur J Pharmacol. 2009;618:98–104. doi: 10.1016/j.ejphar.2009.07.001.
    1. Liang Y, Arakawa K, Ueta K, et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS ONE. 2012;7:e30555. doi: 10.1371/journal.pone.0030555.
    1. Bode B, Stenlof K, Sullivan D, Fung A, Usiskin K. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract. 2013;41:72–84. doi: 10.3810/hp.2013.04.1020.
    1. Cefalu WT, Leiter LA, Yoon K-H, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382:941–950. doi: 10.1016/S0140-6736(13)60683-2.
    1. Lavalle-Gonzalez F, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56:2582–2592. doi: 10.1007/s00125-013-3039-1.
    1. Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35:1232–1238. doi: 10.2337/dc11-1926.
    1. Schernthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week, randomized trial. Diabetes Care. 2013;36:2508–2515. doi: 10.2337/dc12-2491.
    1. Stenlöf K, Cefalu WT, Kim K-A, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15:372–382. doi: 10.1111/dom.12054.
    1. Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15:463–473. doi: 10.1111/dom.12090.
    1. Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013;67:1267–1282. doi: 10.1111/ijcp.12322.
    1. Mari A, Tura A, Gastaldelli A, Ferrannini E. Assessing insulin secretion by modeling in multiple-meal tests: role of potentiation. Diabetes. 2002;51(Suppl 1):S221–S226. doi: 10.2337/diabetes.51.2007.S221.
    1. Mari A, Schmitz O, Gastaldelli A, Oestergaard T, Nyholm B, Ferrannini E. Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab. 2002;283:E1159–E1166.
    1. Mari A, Ferrannini E. Beta-cell function assessment from modelling of oral tests: an effective approach. Diabetes Obes Metab. 2008;10(Suppl 4):77–87. doi: 10.1111/j.1463-1326.2008.00946.x.
    1. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24:539–548. doi: 10.2337/diacare.24.3.539.
    1. Mari A, Bagger JI, Ferrannini E, Holst JJ, Knop FK, Vilsboll T. Mechanisms of the incretin effect in subjects with normal glucose tolerance and patients with type 2 diabetes. PLoS ONE. 2013;8:e73154. doi: 10.1371/journal.pone.0073154.
    1. Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab. 2005;90:4888–4894. doi: 10.1210/jc.2004-2460.
    1. Muscelli E, Casolaro A, Gastaldelli A, et al. Mechanisms for the antihyperglycemic effect of sitagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97:2818–2826. doi: 10.1210/jc.2012-1205.
    1. Mari A, Degn K, Brock B, Rungby J, Ferrannini E, Schmitz O. Effects of the long-acting human glucagon-like peptide-1 analog liraglutide on beta-cell function in normal living conditions. Diabetes Care. 2007;30:2032–2033. doi: 10.2337/dc07-0310.
    1. Mari A, Nielsen LL, Nanayakkara N, Defronzo RA, Ferrannini E, Halseth A. Mathematical modeling shows exenatide improved beta-cell function in patients with type 2 diabetes treated with metformin or metformin and a sulfonylurea. Horm Metab Res. 2006;38:838–844. doi: 10.1055/s-2006-956505.
    1. Loopstra-Masters RC, Haffner SM, Lorenzo C, Wagenknecht LE, Hanley AJ. Proinsulin-to-C-peptide ratio versus proinsulin-to-insulin ratio in the prediction of incident diabetes: the Insulin Resistance Atherosclerosis Study (IRAS) Diabetologia. 2011;54:3047–3054. doi: 10.1007/s00125-011-2322-2.
    1. Sha S, Devineni D, Ghosh A, et al. Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes Obes Metab. 2011;13:669–672. doi: 10.1111/j.1463-1326.2011.01406.x.
    1. Sha S, Polidori D, Heise T, et al. Effect of canagliflozin (CANA) 300 mg on C-peptide clearance (CLCpep) Diabetes. 2013;62:A291–A292. doi: 10.2337/db12-0454.
    1. Radziuk J, Morishima T. New methods for the analysis of insulin kinetics in vivo: insulin secretion, degradation, systemic dynamics and hepatic extraction. Adv Exp Med Biol. 1985;189:247–276. doi: 10.1007/978-1-4757-1850-8_14.

Source: PubMed

3
구독하다