Zebrafish Patient-Derived Xenografts Identify Chemo-Response in Pancreatic Ductal Adenocarcinoma Patients

Alice Usai, Gregorio Di Franco, Margherita Piccardi, Perla Cateni, Luca Emanuele Pollina, Caterina Vivaldi, Enrico Vasile, Niccola Funel, Matteo Palmeri, Luciana Dente, Alfredo Falcone, Dimitri Giunchi, Alessandro Massolo, Vittoria Raffa, Luca Morelli, Alice Usai, Gregorio Di Franco, Margherita Piccardi, Perla Cateni, Luca Emanuele Pollina, Caterina Vivaldi, Enrico Vasile, Niccola Funel, Matteo Palmeri, Luciana Dente, Alfredo Falcone, Dimitri Giunchi, Alessandro Massolo, Vittoria Raffa, Luca Morelli

Abstract

It is increasingly evident the necessity of new predictive tools for the treatment of pancreatic ductal adenocarcinoma in a personalized manner. We present a co-clinical trial testing the predictiveness of zPDX (zebrafish patient-derived xenograft) for assessing if patients could benefit from a therapeutic strategy (ClinicalTrials.gov: XenoZ, NCT03668418). zPDX are generated xenografting tumor tissues in zebrafish embryos. zPDX were exposed to chemotherapy regimens commonly used. We considered a zPDX a responder (R) when a decrease ≥50% in the relative tumor area was reported; otherwise, we considered them a non-responder (NR). Patients were classified as Responder if their own zPDX was classified as an R for the chemotherapy scheme she/he received an adjuvant treatment; otherwise, we considered them a Non-Responder. We compared the cancer recurrence rate at 1 year after surgery and the disease-free survival (DFS) of patients of both groups. We reported a statistically significant higher recurrence rate in the Non-Responder group: 66.7% vs. 14.3% (p = 0.036), anticipating relapse/no relapse within 1 year after surgery in 12/16 patients. The mean DFS was longer in the R-group than the NR-group, even if not statistically significant: 19.2 months vs. 12.7 months, (p = 0.123). The proposed strategy could potentially improve preclinical evaluation of treatment modalities and may enable prospective therapeutic selection in everyday clinical practice.

Keywords: chemosensitivity; pancreatic cancer; personalized medicine; preclinical model; zebrafish avatar.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Zebrafish patient-derived xenograft model and type of response to chemotherapy drugs. (A) zPDXs were established from the transplantation of fresh PDAC human tissue (DiI-labeled) into the perivitelline space of 2 dpf zebrafish embryos. zPDXs were then treated with GEMOX, GEM/nab-P, GEM and FOLFOXIRI for two days to detect their chemosensitivity profile. Representative image on the bottom (the right image is the magnification of the white-delimited area). Scale bars = 50 µm. (B) Percentage of progressive disease (PD), stable disease (SD), minor response (MR), partial response (PR) and complete response (CR). No statistically significant differences were detected by a Chi-square test. (n = 26, 24, 26, 27 zPDXs, respectively, for GEMOX, GEM/nab-P, GEM and FOLFOXIRI).
Figure 2
Figure 2
Effects of chemotherapy drugs in the linear mixed effect model. (A) Effect displays. The treatments are displayed on the x-axis. Dots identify the fixed effect values of %ΔV estimated by LMM. The bars are the 95% CI of fixed values. (B) Post-hoc test results. Pairwise comparisons are on the y-axis, and the differences of marginal means between treatments are on the x-axis. Blue bars represent the 95% CI of means differences. The dashed line is a difference equal to zero between means.
Figure 3
Figure 3
Analysis of LMM predicted %ΔV and 95% CI for each chemotherapy scheme. Predicted values of %ΔV and 95% CI in (A) FOLFOXIRI, (B) GEM/nab-P, (C) GEMOX and (D) GEM. These values were obtained by adding the LMM fitted values of fixed effects to random values and to their simulated 95% CI. The dashed line is 0 on the log scale. The 95% CI above and intersecting the line identify zPDXs with a non-significant reduction of tumor volume. The 95% CI below and not intersecting the line are zPDXs with a significant reduction of tumor volume. Green bars are zPDXs in which tumor mass is significantly reduced compared to control. To determine the significant reduction of tumor volume with respect to control, we overlapped the 95% CI of treatments and control groups. Patient enrollment codes are reported (P = pancreas). (E) Intersection sets of zPDX classified as “non-significant” and (F) “significant” in Figure 3 (table data with the list of patient codes is provided as Table S1).
Figure 4
Figure 4
Analysis of the follow-up data in comparison to the prediction of the zPDX. (A) Relapse/non-relapse (r/nr) information for 16 PDAC patients enrolled in Table 2 versus the respective responder/non-responder (R/NR) zPDXs. We considered relapse when the patient has the clinical evidence of recurrence within one year after surgery. The zPDX treatment response may predict an early relapse (r) or a better response to therapy (non-relapse, nr). Sixteen PDAC zPDX, corresponding to patients subjected to curative surgery and postoperative adjuvant treatment, were treated with GEM, GEM/nab-P, GEMOX and FOLFOXIRI for 2 days. The zPDX response to treatment was analyzed and quantified adapting the WHO criteria for tumor response. We considered responder (R) zPDX with a decrease ≥50% in the relative tumor area. (B) Confusion matrix highlights the number of no cancer relapse (nr) in patients with the own responder (R) zPDX and the number of cancer relapse (r) in patients with the own non-responder (NR) zPDX. (C) Disease-free survival difference in R group (green) and NR group (blue), p = 0.123 by log-rank test.

References

    1. Kleeff J., Korc M., Apte M., La Vecchia C., Johnson C.D., Biankin A.V., Neale R.E., Tempero M., Tuveson D.A., Hruban R.H., et al. Pancreatic cancer. Nat. Rev. Dis. Primers. 2016;2:16022. doi: 10.1038/nrdp.2016.22.
    1. Bengtsson A., Andersson R., Ansari D. The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci. Rep. 2020;10:16425. doi: 10.1038/s41598-020-73525-y.
    1. Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155.
    1. Guler G.D., Ning Y., Ku C.J., Phillips T., McCarthy E., Ellison C.K., Bergamaschi A., Collin F., Lloyd P., Scott A., et al. Detection of early stage pancreatic cancer using 5-hydroxymethylcytosine signatures in circulating cell free DNA. Nat. Commun. 2020;11:5270. doi: 10.1038/s41467-020-18965-w.
    1. Adamska A., Domenichini A., Falasca M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int. J. Mol. Sci. 2017;18:1338. doi: 10.3390/ijms18071338.
    1. Chand S., O’Hayer K., Blanco F.F., Winter J.M., Brody J.R. The Landscape of Pancreatic Cancer Therapeutic Resistance Mechanisms. Int. J. Biol. Sci. 2016;12:273–282. doi: 10.7150/ijbs.14951.
    1. Hidalgo M., Cascinu S., Kleeff J., Labianca R., Löhr J.M., Neoptolemos J., Real F.X., Van Laethem J.L., Heinemann V. Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology. 2015;15:8–18. doi: 10.1016/j.pan.2014.10.001.
    1. Tiriac H., Belleau P., Engle D.D., Plenker D., Deschênes A., Somerville T.D.D., Froeling F.E.M., Burkhart R.A., Denroche R.E., Jang G.H., et al. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov. 2018;8:1112–1129. doi: 10.1158/-18-0349.
    1. Huang L., Holtzinger A., Jagan I., BeGora M., Lohse I., Ngai N., Nostro C., Wang R., Muthuswamy L.B., Crawford H.C., et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 2015;21:1364–1371. doi: 10.1038/nm.3973.
    1. Di Franco G., Usai A., Funel N., Palmeri M., Montesanti I.E.R., Bianchini M., Gianardi D., Furbetta N., Guadagni S., Vasile E., et al. Use of zebrafish embryos as avatar of patients with pancreatic cancer: A new xenotransplantation model towards personalized medicine. World J. Gastroenterol. 2020;26:2792–2809. doi: 10.3748/wjg.v26.i21.2792.
    1. Wang L., Chen H., Fei F., He X., Sun S., Lv K., Yu B., Long J., Wang X. Patient-derived Heterogeneous Xenograft Model of Pancreatic Cancer Using Zebrafish Larvae as Hosts for Comparative Drug Assessment. J. Vis. Exp. 2019;146:31107449. doi: 10.3791/59507.
    1. Jung J., Lee C.H., Seol H.S., Choi Y.S., Kim E., Lee E.J., Rhee J.K., Singh S.R., Jun E.S., Han B., et al. Generation and molecular characterization of pancreatic cancer patient-derived xenografts reveals their heterologous nature. Oncotarget. 2016;7:62533–62546. doi: 10.18632/oncotarget.11530.
    1. Li S., Shen D., Shao J., Crowder R., Liu W., Prat A., He X., Liu S., Hoog J., Lu C., et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4:1116–1130. doi: 10.1016/j.celrep.2013.08.022.
    1. Wu J.Q., Zhai J., Li C.Y., Tan A.M., Wei P., Shen L.Z., He M.F. Patient-derived xenograft in zebrafish embryos: A new platform for translational research in gastric cancer. J. Exp. Clin. Cancer Res. 2017;36:160. doi: 10.1186/s13046-017-0631-0.
    1. Chou J., Fitzgibbon M.P., Mortales C.L., Towlerton A.M., Upton M.P., Yeung R.S., McIntosh M.W., Warren E.H. Phenotypic and transcriptional fidelity of patient-derived colon cancer xenografts in immune-deficient mice. PLoS ONE. 2013;8:e79874. doi: 10.1371/journal.pone.0079874.
    1. Guo M., Wei H., Hu J., Sun S., Long J., Wang X. U0126 inhibits pancreatic cancer progression via the KRAS signaling pathway in a zebrafish xenotransplantation model. Oncol. Rep. 2015;34:699–706. doi: 10.3892/or.2015.4019.
    1. Xiao J., Glasgow E., Agarwal S. Zebrafish Xenografts for Drug Discovery and Personalized Medicine. Trends Cancer. 2020;6:569–579. doi: 10.1016/j.trecan.2020.03.012.
    1. Tentler J.J., Tan A.C., Weekes C.D., Jimeno A., Leong S., Pitts T.M., Arcaroli J.J., Messersmith W.A., Eckhardt S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012;9:338–350. doi: 10.1038/nrclinonc.2012.61.
    1. Hidalgo M., Amant F., Biankin A.V., Budinská E., Byrne A.T., Caldas C., Clarke R.B., de Jong S., Jonkers J., Mælandsmo G.M., et al. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013. doi: 10.1158/-14-0001.
    1. Goto T. Patient-Derived Tumor Xenograft Models: Toward the Establishment of Precision Cancer Medicine. J. Pers. Med. 2020;10:64. doi: 10.3390/jpm10030064.
    1. Huch M., Knoblich J.A., Lutolf M.P., Martinez-Arias A. The hope and the hype of organoid research. Development. 2017;144:938–941. doi: 10.1242/dev.150201.
    1. Fazio M., Ablain J., Chuan Y., Langenau D.M., Zon L.I. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat. Rev. Cancer. 2020;20:263–273. doi: 10.1038/s41568-020-0252-3.
    1. Usai A., Di Franco G., Colucci P., Pollina L.E., Vasile E., Funel N., Palmeri M., Dente L., Falcone A., Morelli L., et al. A Model of a Zebrafish Avatar for Co-Clinical Trials. Cancers. 2020;12:677. doi: 10.3390/cancers12030677.
    1. Brunner M., Wu Z., Krautz C., Pilarsky C., Grützmann R., Weber G.F. Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions. Int. J. Mol. Sci. 2019;20:4543. doi: 10.3390/ijms20184543.
    1. Fischer R., Breidert M., Keck T., Makowiec F., Lohrmann C., Harder J. Early recurrence of pancreatic cancer after resection and during adjuvant chemotherapy. Saudi J. Gastroenterol. 2012;18:118–121. doi: 10.4103/1319-3767.93815.
    1. Matsumoto I., Murakami Y., Shinzeki M., Asari S., Goto T., Tani M., Motoi F., Uemura K., Sho M., Satoi S., et al. Proposed preoperative risk factors for early recurrence in patients with resectable pancreatic ductal adenocarcinoma after surgical resection: A multi-center retrospective study. Pancreatology. 2015;15:674–680. doi: 10.1016/j.pan.2015.09.008.
    1. Von Hoff D.D., Ervin T., Arena F.P., Chiorean E.G., Infante J., Moore M., Seay T., Tjulandin S.A., Ma W.W., Saleh M.N., et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013;369:1691–1703. doi: 10.1056/NEJMoa1304369.
    1. Conroy T., Desseigne F., Ychou M., Bouché O., Guimbaud R., Bécouarn Y., Adenis A., Raoul J.L., Gourgou-Bourgade S., de la Fouchardière C., et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011;364:1817–1825. doi: 10.1056/NEJMoa1011923.
    1. Abbruzzese J.L., Hess K.R. New option for the initial management of metastatic pancreatic cancer? J. Clin. Oncol. 2014;32:2405–2407. doi: 10.1200/JCO.2013.54.4155.
    1. Verma M. Personalized medicine and cancer. J. Pers. Med. 2012;2:1–14. doi: 10.3390/jpm2010001.
    1. Krzyszczyk P., Acevedo A., Davidoff E.J., Timmins L.M., Marrero-Berrios I., Patel M., White C., Lowe C., Sherba J.J., Hartmanshenn C., et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2018;6:79–100. doi: 10.1142/S2339547818300020.
    1. Costa B., Estrada M.F., Mendes R.V., Fior R. Zebrafish Avatars towards Personalized Medicine-A Comparative Review between Avatar Models. Cells. 2020;9:293. doi: 10.3390/cells9020293.
    1. Byrne A.T., Alférez D.G., Amant F., Annibali D., Arribas J., Biankin A.V., Bruna A., Budinská E., Caldas C., Chang D.K., et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer. 2017;17:254–268. doi: 10.1038/nrc.2016.140.
    1. Hason M., Bartůněk P. Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes. 2019;10:935. doi: 10.3390/genes10110935.
    1. Lieschke G.J., Currie P.D. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007;8:353–367. doi: 10.1038/nrg2091.
    1. Haldi M., Ton C., Seng W.L., McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9:139–151. doi: 10.1007/s10456-006-9040-2.
    1. Dauer P., Nomura A., Saluja A., Banerjee S. Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters. Pancreatology. 2017;17:7–12. doi: 10.1016/j.pan.2016.12.010.
    1. Neesse A., Michl P., Frese K.K., Feig C., Cook N., Jacobetz M.A., Lolkema M.P., Buchholz M., Olive K.P., Gress T.M., et al. Stromal biology and therapy in pancreatic cancer. Gut. 2011;60:861–868. doi: 10.1136/gut.2010.226092.
    1. Weniger M., Honselmann K.C., Liss A.S. The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship. Cancers. 2018;10:316. doi: 10.3390/cancers10090316.
    1. Stopa K.B., Kusiak A.A., Szopa M.D., Ferdek P.E., Jakubowska M.A. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int. J. Mol. Sci. 2020;21:3218. doi: 10.3390/ijms21093218.
    1. Fior R., Póvoa V., Mendes R.V., Carvalho T., Gomes A., Figueiredo N., Ferreira M.G. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl. Acad. Sci. USA. 2017;114:E8234–E8243. doi: 10.1073/pnas.1618389114.
    1. Georgakopoulos N., Prior N., Angres B., Mastrogiovanni G., Cagan A., Harrison D., Hindley C.J., Arnes-Benito R., Liau S.S., Curd A., et al. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Dev. Biol. 2020;20:4. doi: 10.1186/s12861-020-0209-5.
    1. Weibel P., Pavic M., Lombriser N., Gutknecht S., Weber M. Chemoradiotherapy after curative surgery for locally advanced pancreatic cancer: A 20-year single center experience. Surg. Oncol. 2021;36:36–41. doi: 10.1016/j.suronc.2020.11.012.
    1. Turpin A., El Amrani M., Bachet J.B., Pietrasz D., Schwarz L., Hammel P. Adjuvant Pancreatic Cancer Management: Towards New Perspectives in 2021. Cancers. 2020;12:3866. doi: 10.3390/cancers12123866.
    1. Lee K.H., Chie E.K., Im S.A., Kim J.H., Kwon J., Han S.W., Oh D.Y., Jang J.Y., Kim J.S., Kim T.Y., et al. Phase II Trial of Postoperative Adjuvant Gemcitabine and Cisplatin Chemotherapy Followed by Chemoradiotherapy with Gemcitabine in Patients with Resected Pancreatic Cancer. Cancer Res. Treat. 2020:33421976. doi: 10.4143/crt.2020.928.
    1. Amin M.B., Greene F.L., Edge S.B., Compton C.C., Gershenwald J.E., Brookland R.K., Meyer L., Gress D.M., Byrd D.R., Winchester D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017;67:93–99. doi: 10.3322/caac.21388.
    1. Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995;203:253–310. doi: 10.1002/aja.1002030302.
    1. World Health Organization . WHO Handbook for Reporting Results of Cancer Treatment. World Health Organization; Geneva, Switzerland: 1979. p. 45.
    1. Zuur A., Ieno E.N., Walker N., Saveliev A.A., Smith G.M. Mixed Effects Models and Extensions in Ecology with R. 1st ed. Springer; New York, NY, USA: 2009.
    1. Fox J. Applied Regression Analysis and Generalized Linear Models. 3rd ed. SAGE; Los Angeles, CA, USA: London, UK: 2016. p. 791.

Source: PubMed

3
구독하다