A randomized pilot trial to evaluate the benefit of the concomitant use of atorvastatin and Raltegravir on immunological markers in protease-inhibitor-treated subjects living with HIV

Eugènia Negredo, Montse Jiménez, Jordi Puig, Cora Loste, Núria Pérez-Álvarez, Victor Urrea, Patricia Echeverría, Anna Bonjoch, Bonaventura Clotet, Julià Blanco, Eugènia Negredo, Montse Jiménez, Jordi Puig, Cora Loste, Núria Pérez-Álvarez, Victor Urrea, Patricia Echeverría, Anna Bonjoch, Bonaventura Clotet, Julià Blanco

Abstract

Objective: Optimization of antiretroviral therapy and anti-inflammatory treatments, such as statins, are among the strategies aimed at reducing metabolic disorders, inflammation and immune activation in people living with HIV (PLWH). We evaluated the potential benefit of combining both strategies.

Design: Forty-two PLWH aged ≥40 years receiving a protease inhibitor (PI)-based regimen were randomized (1:1) to switch from PI to Raltegravir (n = 20), or to remain on PI (n = 22). After 24 weeks, all patients received atorvastatin 20mg/day for 48 weeks.

Methods: We analyzed plasma inflammatory as well as T-cell maturation, activation, exhaustion and senescence markers at baseline, 24 and 72 weeks.

Results: Plasma inflammatory markers remained unchanged. Furthermore, no major changes on T-cell maturation subsets, immunoactivation, exhaustion or immunosenescence markers in both CD4 and CD8 T cell compartments were observed. Only a modest decrease in the frequency of CD38+ CD8 T cells and an increase in the frequency of CD28-CD57+ in both CD4 and CD8 T-cell compartments were noticed in the Raltegravir-switched group.

Conclusions: The study combined antiretroviral switch to Raltegravir and Statin-based anti-inflammatory strategies to reduce inflammation and chronic immune activation in PLWH. Although this combination was safe and well tolerated, it had minimal impact on inflammatory and immunological markers.

Clinical trials registration: NCT02577042.

Conflict of interest statement

Unrelated to this work, JB is CEo founder and shareholder of AlbaJuna Therapeutics, S.L. This study was funded by Merk Sharp & Dome (MSD) through the MSD Investigator Studies Program (IIS # 52754), grant to EN. This funder did not play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript "This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Trial design.
Fig 1. Trial design.
A. Consolidated Standards of Reporting Trials (CONSORT) flow diagram for the trial showing Participant flow in Control and Raltegravir groups. B. Schematic representation of intervention, patients were randomized to the Control and Raltegravir groups and, after 24 weeks, atorvastatin was added to all participants. Follow up visits are indicated for each group.
Fig 2. of maturation subsets in CD4…
Fig 2. of maturation subsets in CD4 and CD8 T cells.
Analysis Figure shows median values for the frequency of the maturation subsets (Naïve, Central Memory, Effector Memory, Transitional Memory and Effector Memory RA+) in CD4 (panel A) or CD8 T cells (Panel B) in Control (greyscale) and Raltegravir (blue) groups at three different time points: week 0 (start of the study), week 24 (treatment follow-up), and week 72 (48 weeks after atorvastatin treatment). Maturation stages were defined based on the combination of CD45RA, CD197 (CCR7) and CD27 as described in Methods. Asterisks denote p<0.05 either intergroups or longitudinally intragroup as indicated.
Fig 3. Evaluation of the changes in…
Fig 3. Evaluation of the changes in activation, CD38+ expression, immunosenescence and exhaustion levels in CD4 and CD8 T cells.
Measure of changes in mean activation levels (defined by HLA-DR+CD38+ coexpression, panels A and E) CD38+ cells (panels B and F) senescence (CD57+CD28–, panels C and G) and exhaustion (PD-1+, panels D and H) levels in CD4+ T cells (panels A-D) and CD8 T cells (panels E-H) comparing both study groups. These differences were evaluated between w0–w24, w0–w72 and w24–w72. Control group is represented in grey and the Raltegravir group in blue. Asterisks denote p

References

    1. Kendall CE, Taljaard M, Younger J, Hogg W, Glazier RH, Manuel DG. A population-based study comparing patterns of care delivery on the quality of care for persons living with HIV in Ontario. BMJ Open 2015; 5:e007428 10.1136/bmjopen-2014-007428
    1. Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE, et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis 2014; 59:1787–97. 10.1093/cid/ciu701
    1. High KP, Brennan-Ing M, Clifford DB, Cohen MH, Currier J, Deeks SG, et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J Acquir Immune Defic Syndr 2012; 60 Suppl 1:S1–18.
    1. Hunt PW. HIV and aging: emerging research issues. Curr Opin HIV AIDS 2014; 9:302–8. 10.1097/COH.0000000000000072
    1. Negredo E, Back D, Blanco J-R, Blanco J, Erlandson KM, Garolera M, et al. Aging in HIV-Infected Subjects: A New Scenario and a New View. Biomed Res Int 2017; 2017:5897298 10.1155/2017/5897298
    1. Effros RB, Fletcher C V, Gebo K, Halter JB, Hazzard WR, Horne FM, et al. Aging and infectious diseases: workshop on HIV infection and aging: what is known and future research directions. Clin Infect Dis 2008; 47:542–53. 10.1086/590150
    1. Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev 2011; 10:430–9. 10.1016/j.arr.2011.03.003
    1. Massanella M, Ouchi D, Marfil S, Llibre JM, Puertas MC, Buzón MJ, et al. Different plasma markers of inflammation are influenced by immune recovery and cART composition or intensification in treated HIV infected individuals. PLoS One 2014; 9:e114142 10.1371/journal.pone.0114142
    1. Liu Z, Cumberland WG, Hultin LE, Prince HE, Detels R, Giorgi J V. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the Multicenter AIDS Cohort Study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 16:83–92. 10.1097/00042560-199710010-00003
    1. Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One 2012; 7:e44454 10.1371/journal.pone.0044454
    1. French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J Infect Dis 2009; 200:1212–5. 10.1086/605890
    1. Boulware DR, Hullsiek KH, Puronen CE, Rupert A, Baker J V, French MA, et al. Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J Infect Dis 2011; 203:1637–1646. 10.1093/infdis/jir134
    1. Neuhaus J, Jacobs DR, Baker J V, Calmy A, Duprez D, La Rosa A, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis 2010; 201:1788–95. 10.1086/652749
    1. Lennox JL, DeJesus E, Lazzarin A, Pollard RB, Madruga JVR, Berger DS, et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. Lancet (London, England) 2009; 374:796–806.
    1. Gallant J, Hsue PY, Shreay S, Meyer N. Comorbidities Among US Patients With Prevalent HIV Infection-A Trend Analysis. J Infect Dis 2017; 216:1525–1533. 10.1093/infdis/jix518
    1. Pastor L, Urrea V, Carrillo J, Parker E, Fuente-Soro L, Jairoce C, et al. Dynamics of CD4 and CD8 T-Cell Subsets and Inflammatory Biomarkers during Early and Chronic HIV Infection in Mozambican Adults. Front Immunol 2017; 8:1925 10.3389/fimmu.2017.01925
    1. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 2013; 14:877–882. 10.1016/j.jamda.2013.05.009
    1. Puertas MC, Massanella M, Llibre JM, Ballestero M, Buzon MJ, Ouchi D, et al. Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection. AIDS 2014; 28:325–34. 10.1097/QAD.0000000000000066
    1. Moron-Lopez S, Navarro J, Jimenez M, Rutsaert S, Urrea V, Puertas MC, et al. Switching from a protease inhibitor-based regimen to a dolutegravir-based regimen: a randomized clinical trial to determine the effect on peripheral blood and ileum biopsies from ART-suppressed HIV-infected individuals. Clin Infect Dis Published Online First: 2018. 10.1093/cid/ciy1095
    1. Hunt PW, Martin JN, Sinclair E, Epling L, Teague J, Jacobson MA, et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis 2011; 203:1474–1483. 10.1093/infdis/jir060
    1. Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, Argenteri B, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, ART-treated, immunological non-responders. Blood Published Online First: 2011. 10.1182/blood-2011-01-329060
    1. Ganesan A, Crum-Cianflone N, Higgins J, Qin J, Rehm C, Metcalf J, et al. High dose atorvastatin decreases cellular markers of immune activation without affecting HIV-1 RNA levels: results of a double-blind randomized placebo controlled clinical trial. J Infect Dis 2011; 203:756–64. 10.1093/infdis/jiq115
    1. Steigbigel RT, Cooper DA, Teppler H, Eron JJ, Gatell JM, Kumar PN, et al. Long-term efficacy and safety of Raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 Phase III trials. Clin Infect Dis 2010; 50:605–12. 10.1086/650002
    1. Toribio M, Fitch K V, Sanchez L, Burdo TH, Williams KC, Sponseller CA, et al. Effects of pitavastatin and pravastatin on markers of immune activation and arterial inflammation in HIV. AIDS 2017; 31:797–806. 10.1097/QAD.0000000000001427
    1. Brown TT, Moser C, Currier JS, Ribaudo HJ, Rothenberg J, Kelesidis T, et al. Changes in Bone Mineral Density After Initiation of Antiretroviral Treatment With Tenofovir Disoproxil Fumarate/Emtricitabine Plus Atazanavir/Ritonavir, Darunavir/Ritonavir, or Raltegravir. J Infect Dis 2015; 212:1241–9. 10.1093/infdis/jiv194
    1. Martínez E, D’Albuquerque PM, Llibre JM, Gutierrez F, Podzamczer D, Antela A, et al. Changes in cardiovascular biomarkers in HIV-infected patients switching from ritonavir-boosted protease inhibitors to raltegravir. AIDS 2012; 26:2315–26. 10.1097/QAD.0b013e328359f29c
    1. Massanella M, Negredo E, Puig J, Puertas MC, Buzón MJ, Pérez-Álvarez N, et al. Raltegravir intensification shows differing effects on CD8 and CD4 T cells in HIV-infected HAART-suppressed individuals with poor CD4 T-cell recovery. AIDS 2012; 26:2285–93. 10.1097/QAD.0b013e328359f20f
    1. Buzón MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 2010; 16:460–5. 10.1038/nm.2111
    1. Negredo E, Massanella M, Puertas MC, Buzón MJ, Puig J, Pérez-Alvárez N, et al. Early but limited effects of raltegravir intensification on CD4 T cell reconstitution in HIV-infected patients with an immunodiscordant response to antiretroviral therapy. J Antimicrob Chemother 2013; 68:2358–62. 10.1093/jac/dkt183
    1. Dubé MP. Will statins be an effective anti-inflammatory intervention for prevention of cardiovascular disease in patients with HIV? J Infect Dis 2014; 209:1149–50. 10.1093/infdis/jiu015
    1. Calza L, Trapani F, Bartoletti M, Manfredi R, Colangeli V, Borderi M, et al. Statin therapy decreases serum levels of high-sensitivity C-reactive protein and tumor necrosis factor-α in HIV-infected patients treated with ritonavir-boosted protease inhibitors. HIV Clin Trials; 13:153–61. 10.1310/hct1303-153
    1. Calza L, Vanino E, Salvadori C, Manfredi R, Colangeli V, Cascavilla A, et al. Tenofovir/emtricitabine/efavirenz plus rosuvastatin decrease serum levels of inflammatory markers more than antiretroviral drugs alone in antiretroviral therapy-naive HIV-infected patients. HIV Clin Trials; 15:1–13. 10.1310/hct1501-1
    1. Funderburg NT, Jiang Y, Debanne SM, Labbato D, Juchnowski S, Ferrari B, et al. Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr 2015; 68:396–404. 10.1097/QAI.0000000000000478
    1. Funderburg NT, Jiang Y, Debanne SM, Storer N, Labbato D, Clagett B, et al. Rosuvastatin treatment reduces markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. Clin Infect Dis 2014; 58:588–95. 10.1093/cid/cit748
    1. Auclair M, Afonso P, Capel E, Caron-Debarle M, Capeau J. Impact of darunavir, atazanavir and lopinavir boosted with ritonavir on cultured human endothelial cells: beneficial effect of pravastatin. Antivir Ther 2014; 19:773–82. 10.3851/IMP2752
    1. Erlandson KM, Jiang Y, Debanne SM, McComsey GA. Effects of randomized rosuvastatin compared with placebo on bone and body composition among HIV-infected adults. AIDS 2015; 29:175–82. 10.1097/QAD.0000000000000526
    1. Overton ET, Kitch D, Benson CA, Hunt PW, Stein JH, Smurzynski M, et al. Effect of statin therapy in reducing the risk of serious non-AIDS-defining events and nonaccidental death. Clin Infect Dis 2013; 56:1471–9. 10.1093/cid/cit053
    1. Galli L, Spagnuolo V, Poli A, Salpietro S, Gianotti N, Cossarini F, et al. Use of statins and risk of AIDS-defining and non-AIDS-defining malignancies among HIV-1 infected patients on antiretroviral therapy. AIDS 2014; 28:2407–15. 10.1097/QAD.0000000000000443
    1. Rasmussen LD, Kronborg G, Larsen CS, Pedersen C, Gerstoft J, Obel N. Statin therapy and mortality in HIV-infected individuals; a Danish nationwide population-based cohort study. PLoS One 2013; 8:e52828 10.1371/journal.pone.0052828
    1. Grinspoon SK, Fitch K V, Overton ET, Fichtenbaum CJ, Zanni M V, Aberg JA, et al. Rationale and design of the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Am Heart J 2019; 212:23–35. 10.1016/j.ahj.2018.12.016
    1. Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 2008; 5:e203 10.1371/journal.pmed.0050203
    1. Funderburg NT, Mayne E, Sieg SF, Asaad R, Jiang W, Kalinowska M, et al. Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood 2010; 115:161–7.
    1. Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 2011; 203:780–90. 10.1093/infdis/jiq118
    1. Hatano H, Hayes TL, Dahl V, Sinclair E, Lee T-HH, Hoh R, et al. A Randomized, Controlled Trial of Raltegravir Intensification in Antiretroviral-treated, HIV-infected Patients with a Suboptimal CD4+ T Cell Response. J Infect Dis 2011; 203:960–968. 10.1093/infdis/jiq138
    1. Llibre JM, Buzón MJ, Massanella M, Esteve A, Dahl V, Puertas MC, et al. Treatment intensification with raltegravir in subjects with sustained HIV-1 viraemia suppression: a randomized 48-week study. Antivir Ther 2012; 17:355–64. 10.3851/IMP1917
    1. Negredo E, Clotet B, Puig J, Pérez-Alvarez N, Ruiz L, Romeu J, et al. The effect of atorvastatin treatment on HIV-1-infected patients interrupting antiretroviral therapy. AIDS 2006; 20:619–21. 10.1097/01.aids.0000210617.90954.0e
    1. Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis 2011; 203:452–463. 10.1093/infdis/jiq071
    1. Lee SA, Sinclair E, Hatano H, Hsue PY, Epling L, Hecht FM, et al. Impact of HIV on CD8+ T cell CD57 expression is distinct from that of CMV and aging. PLoS One 2014; 9:e89444 10.1371/journal.pone.0089444

Source: PubMed

3
구독하다