Serial cfDNA assessment of response and resistance to EGFR-TKI for patients with EGFR-L858R mutant lung cancer from a prospective clinical trial

Qing Zhou, Jin-Ji Yang, Zhi-Hong Chen, Xu-Chao Zhang, Hong-Hong Yan, Chong-Rui Xu, Jian Su, Hua-Jun Chen, Hai-Yan Tu, Wen-Zhao Zhong, Xue-Ning Yang, Yi-Long Wu, Qing Zhou, Jin-Ji Yang, Zhi-Hong Chen, Xu-Chao Zhang, Hong-Hong Yan, Chong-Rui Xu, Jian Su, Hua-Jun Chen, Hai-Yan Tu, Wen-Zhao Zhong, Xue-Ning Yang, Yi-Long Wu

Abstract

Background: Detecting epidermal growth factor receptor (EGFR) activating mutations in plasma could guide EGFR-tyrosine kinase inhibitor (EGFR-TKI) treatment for advanced non-small cell lung cancer (NSCLC). However, dynamic quantitative changes of plasma EGFR mutations during the whole course of EGFR-TKI treatment and its correlation with clinical outcomes were not determined. The aim of this study was to measure changes of plasma EGFR L858R mutation during EGFR-TKI treatment and to determine its correlation with the response and resistance to EGFR-TKI.

Methods: This study was a pre-planned exploratory analysis of a randomized phase III trial conducted from 2009 to 2014 comparing erlotinib with gefitinib in advanced NSCLC harboring EGFR mutations in tumor (CTONG0901). Totally, 256 patients were enrolled in CTONG0901 and randomized to receive erlotinib or gefitinib. One hundred and eight patients harbored L858R mutation in their tumors and 80 patients provided serial blood samples as pre-planned scheduled. Serial plasma L858R was detected using quantitative polymerase chain reaction. Dynamic types of plasma L858R were analyzed using Ward's hierarchical clustering method. Progression-free survival (PFS) and overall survival (OS) were compared between different types.

Results: As a whole, the quantity of L858R decreased and reached the lowest level at the time of best response to EGFR-TKI. After the analysis of Ward's hierarchical clustering method, two dynamic types were found. In 61 patients, L858R increased to its highest level when disease progressed (ascend type), while in 19 patients, L858R maintained a stable level when disease progressed (stable type). Median PFS was 11.1 months (95 % CI, 6.6-15.6) and 7.5 months (95 % CI, 1.4-13.6) in patients with ascend and stable types, respectively (P = 0.023). Median OS was 19.7 months (95 % CI, 16.5-22.9) and 16.0 months (95 % CI, 13.4-18.5), respectively (P = 0.050).

Conclusions: This is the first report finding two different dynamic types of plasma L858R mutation during EGFR-TKI treatment based on a prospective randomized study. Different dynamic types were correlated with benefits from EGFR-TKI. The impact of plasma L858R levels at disease progression on subsequent treatment strategy needs further exploration.

Trial registration: ClinicalTrials.gov, NCT01024413.

Keywords: Circulating free DNA; EGFR-TKI; Lung cancer; Plasma EGFR mutation; Quantitative change.

Figures

Fig. 1
Fig. 1
CONSORT diagram
Fig. 2
Fig. 2
Dynamic change of plasma L858R mutation and tumor burden during EGFR-TKI treatment. a In total 80 patients, the quantity of L858R decreased to its lowest level at the time of best response to EGFR-TKI treatment, and then increased to its highest level when the disease progressed. b Using Ward’s hierarchical clustering analysis, 80 patients were classified into two groups according to their type of change. In one group, the quantity of L858R increased to its highest level at the time of disease progression (ascend group), while in the other group, the quantity of L858R did not increase and maintained a stable level as the disease progressed (stable group)
Fig. 3
Fig. 3
a Progression-free survival of patients in the ascend group and the stable group. b Overall survival of patients in the ascend group and the stable group

References

    1. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57. doi: 10.1056/NEJMoa0810699.
    1. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8. doi: 10.1056/NEJMoa0909530.
    1. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8. doi: 10.1016/S1470-2045(09)70364-X.
    1. Zhou C, Wu Y-L, Chen G, Feng J, Liu X-Q, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42. doi: 10.1016/S1470-2045(11)70184-X.
    1. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46. doi: 10.1016/S1470-2045(11)70393-X.
    1. Wu YL, Zhou C, Hu CP, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213–22. doi: 10.1016/S1470-2045(13)70604-1.
    1. Sun W, Yuan X, Tian Y, Wu H, Xu H, Hu G, et al. Non-invasive approaches to monitor EGFR-TKI treatment in non-small-cell lung cancer. J Hematol Oncol. 2015;8:95. doi: 10.1186/s13045-015-0193-6.
    1. Kimura H, Suminoe M, Kasahara K, Sone T, Araya T, Tamori S, et al. Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA) Br J Cancer. 2007;97(6):778–84. doi: 10.1038/sj.bjc.6603949.
    1. Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol. 2014;9(9):1345–53. doi: 10.1097/JTO.0000000000000263.
    1. Couraud S, Vaca-Paniagua F, Villar S, Oliver J, Schuster T, Blanche H, et al. Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002. Clin Cancer Res. 2014;20(17):4613–24. doi: 10.1158/1078-0432.CCR-13-3063.
    1. Iressa: EPAR - Product Information. European Medicines Agency website. . Accessed 23 Jun 2016.
    1. IRESSA China prescriber information, updated on Feb, 2015, AstraZeneca.
    1. Sacher AG, Oxnard GR, Mach SL, Melissa MM, Jackman DM, Janne PA, et al. Prediction of lung cancer genotype noninvasively using droplet digital PCR (ddPCR) analysis of cell-free plasma DNA (cfDNA) J Clin Oncol. 2014;32:5s. doi: 10.1200/JCO.2013.52.7804.
    1. Wang J, Yang X, Zhuo M, Ye X, Bai H, Wang Z. Quantification of mutant alleles in circulating tumor DNA from advanced non-small cell lung cancer. J Thorac Oncol. 2015;10:S205.
    1. Marchetti A, Palma JF, Felicioni L, De Pas TM, Chiari R, Del Grammastro M, et al. Early prediction of response to tyrosine kinase inhibitors by quantification of EGFR mutations in plasma of NSCLC patients. J Thorac Oncol. 2015;10(10):1437–43. doi: 10.1097/JTO.0000000000000643.
    1. Mok T, Wu YL, Lee JS, Yu CJ, Sriuranpong V, Sandoval-Tan J, et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin Cancer Res. 2015;21(14):3196–203. doi: 10.1158/1078-0432.CCR-14-2594.
    1. Zhou Q, Zhang XC, Chen ZH, Yin XL, Yang JJ, Xu CR, et al. Relative abundance of EGFR mutations predicts benefit from gefitinib treatment for advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(24):3316–21. doi: 10.1200/JCO.2010.33.3757.
    1. Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16(2):141–51. doi: 10.1016/S1470-2045(14)71173-8.
    1. Zhang Y, Sheng J, Kang S, Fang W, Yan Y, Hu Z, et al. Patients with exon 19 deletion were associated with longer progression-free survival compared to those with L858R mutation after first-line EGFR-TKIs for advanced non-small cell lung cancer: a meta-analysis. PLoS One. 2014;9(9) doi: 10.1371/journal.pone.0107161.
    1. Wang S, Su X, Bai H, Zhao J, Duan J, An T, et al. Identification of plasma microRNA profiles for primary resistance to EGFR-TKIs in advanced non-small cell lung cancer (NSCLC) patients with EGFR activating mutation. J Hematol Oncol. 2015;8:127. doi: 10.1186/s13045-015-0210-9.
    1. Diaz LA, Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. doi: 10.1200/JCO.2012.45.2011.
    1. Roma C, Esposito C, Rachiglio AM, Pasquale R, Iannaccone A, Chicchinelli N, et al. Detection of EGFR mutations by TaqMan mutation detection assays powered by competitive allele-specific TaqMan PCR technology. Biomed Res Int. 2013;2013:385087. doi: 10.1155/2013/385087.
    1. Angulo B, Conde E, Suarez-Gauthier A, Plaza C, Martinez R, Redondo P, et al. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry. PLoS One. 2012;7(8) doi: 10.1371/journal.pone.0043842.
    1. Thress KS, Brant R, Carr TH, Dearden S, Jenkins S, Brown H, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. 2015;90(3):509–15. doi: 10.1016/j.lungcan.2015.10.004.
    1. Wang S, Cang S, Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J Hematol Oncol. 2016;9:34. doi: 10.1186/s13045-016-0268-z.

Source: PubMed

3
구독하다