此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

Inflammatory Abnormalities in Muscle After Stroke: Effects of Exercise

2017年6月22日 更新者:VA Office of Research and Development
The purpose of this study is to first define whether abnormalities of skeletal muscle are related to the presence of inflammation and to poor motor performance and whether this can be modified by exercise interventions.

研究概览

详细说明

Stroke is the leading cause of disability in the United States. Biological changes in hemiparetic skeletal muscle may further propagate the disability. The investigators report gross muscular atrophy and major shift to fast myosin heavy chain (MHC) isoform distribution in hemiparetic thigh that are related to reduced fitness and slow walking speed. The investigators also find elevated inflammatory mediators, tumor necrosis factor (TNF) and nuclear factor kappa beta (NFkB) in the paretic thigh muscle. No prior studies have systematically examined the profile of hemiparetic muscle contractile proteins and their relationship to function and fitness after stroke. Furthermore, the molecular mechanisms underlying hemiparetic skeletal muscle atrophy and contractile protein abnormalities are unknown.

The investigators have investigated treadmill aerobic exercise (T-AEX), as a task-oriented training model. This exercise model can reverse the alterations in MHC profile in hemiparetic leg muscles after stroke. This T-AEX program also improves fitness (VO2) levels, leg strength, and ambulatory performance in chronic stroke. Moreover, post hoc analyses our randomized treadmill exercise program show that specific features of the exercise prescription likely influence the nature of exercise-mediated adaptations.

Hypothesis: The investigators propose a randomized clinical study to investigate the hypothesis that in chronic stroke patients a 6 month velocity-based progressive T-AEX program is superior to duration-based progressive T-AEX for improving hemiparetic (HP) leg skeletal muscle contractile protein expression and reducing inflammatory markers to improve muscle function, fitness, and ambulation.

Specific Aims: 1) Determine whether skeletal muscle MHC isoform expression is altered and inflammatory mediators, TNF and markers of NFkB activation, present in the hemiparetic vastus lateralis muscle, compared the non-paretic leg and matched non-stroke control leg muscles, and related to muscle function, fitness, and gait performance. 2) Determine whether 6 months progressive T-AEX programs can attenuate this abnormal MHC profile and inflammatory mediators to improve muscle structure and function.

Methods: At baseline, bilateral vastus lateralis (VL) biopsies are obtained from chronically disabled, stroke participants with hemiparetic gait to examine the HP and non-P thigh skeletal muscles for alterations in MHC isoforms, key muscle contractile protein, and evidence for inflammation (TNFa) and NFkB activation. Participants are randomized to 6 months of progressive velocity-based or duration-based T-AEX training. Repeat VL muscle biopsies are obtained in the HP limb only after exercise interventions to assess whether 6-month exercise rehabilitation can restore MHC profile and attenuate activation of inflammatory pathways. Expression of the specific MHC isoforms, TNF, and NFKB marker expression (mRNA and protein) are investigated in these muscle tissues by real-time real time (RT)- polymerase chain reaction (PCR), Western Blot analysis, and immunohistochemistry. The investigators will explore relationships between T-AEX mediated changes in MHC expression and inflammatory activation in skeletal muscle after stroke to improve muscle strength, muscle performance, fitness and activity levels, activities of daily living (ADL) performance, and gait deficit severity.

Anticipated Results and Relevance: The cross-sectional baseline data will provide the first systematic study of a substantial cohort of stroke patients to define the relationship between altered structural and contractile protein expression to both muscle physiology and clinical measures of muscle performance, metabolic fitness, and rehabilitation mobility outcomes. HP VL muscle will be directly compared to the non-paretic (NP) limb muscle within-subjects and to non-stroke reference controls, in order to better understand the scope of skeletal muscle inflammatory and metabolic abnormalities in the stroke population. The intervention results will allow us to determine the specific requirements of treadmill training that are optimal and crucial to produce the exercise-mediated adaptations in hemiparetic skeletal muscle that lead to improved rehabilitation outcomes to reduce the disability of chronic stroke.

研究类型

介入性

注册 (实际的)

99

阶段

  • 不适用

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习地点

    • Maryland
      • Baltimore、Maryland、美国、21201
        • VA Maryland Health Care System, Baltimore

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

40年 至 80年 (成人、年长者)

接受健康志愿者

有资格学习的性别

全部

描述

Inclusion Criteria:

  • Chronic stroke (>6 months after initial stroke)
  • Age 40-80
  • Stable neurologic deficits
  • Able to walk with an assistive device
  • Language skills to understand the training program safely

Exclusion Criteria:

  • No anticoagulation or medical conditions that preclude exercise.
  • No dementias or depression

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

  • 主要用途:治疗
  • 分配:随机化
  • 介入模型:并行分配
  • 屏蔽:无(打开标签)

武器和干预

参与者组/臂
干预/治疗
实验性的:Velocity based treadmill training
6 month of progressive treadmill walking with treadmill speed gradually progressed to meet the training heart rate goals for moderate intensity aerobic exercise, when hemiparetic gait velocity can no longer be safely progressed, incline is added to achieve the heart rate training goals.
6 month of progressive treadmill walking with a safety harness and hand rail support to prevent falls. Treadmill speed is gradually progressed to meet the training heart rate goals for moderate aerobic exercise, when hemiparetic gait velocity can no longer be progressed, incline is added to achieve heart rate training goals. Progression is also based on participant's tolerance, abilities and safety.
实验性的:Duration based treadmill training
6 month of progressive treadmill walking with duration is gradually progressed to meet the endurance goals for low aerobic intensity exercise, gait velocity and incline do not progress.
6 month of progressive treadmill walking with a safety harness and hand rail support to prevent falls. Treadmill duration is gradually progressed to meet the endurance goals for low aerobic intensity exercise, gait velocity and incline do not progress. Progression is based on participant's tolerance, abilities and safety.

研究衡量的是什么?

主要结果指标

结果测量
措施说明
大体时间
Cardiovascular Fitness (VO2 Peak)
大体时间:Baseline to 6 month
Cardiovascular fitness is measured by collecting the expired gases during a progressive graded treadmill test.
Baseline to 6 month
Paretic Thigh Skeletal Muscle Myosin Heavy Chain Myosin Heavy Chain Isoform 2a
大体时间:Baseline to 6 month
Skeletal muscle punch biopsies are obtained from the bilateral (paretic and non-paretic) vastus lateralis thigh muscle, at baseline and after 6 month interventions. Homogenized muscle messenger ribonucleic acid (mRNA) for myosin heavy chain isoforms are analyzed by real time polymerase chain reaction as fluorescent units with normalization to an acidic ribosomal protein, a housekeeping gene.
Baseline to 6 month

次要结果测量

结果测量
措施说明
大体时间
30 Foot Walk Time (Sec)
大体时间:baseline to 6 month
Participants are instructed to walk fast as comfortable on a straight pathway on the floor demarcated by cones. They may use their usual canes, walkers, and orthotics while they walk. The walks are timed, the value is the mean of three trials with an interval rest between each trial.
baseline to 6 month

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

调查人员

  • 首席研究员:Charlene Hafer-Macko, MD、VA Maryland Health Care System, Baltimore

出版物和有用的链接

负责输入研究信息的人员自愿提供这些出版物。这些可能与研究有关。

一般刊物

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始

2006年10月1日

初级完成 (实际的)

2012年8月1日

研究完成 (实际的)

2014年8月1日

研究注册日期

首次提交

2006年10月12日

首先提交符合 QC 标准的

2006年10月12日

首次发布 (估计)

2006年10月13日

研究记录更新

最后更新发布 (实际的)

2017年9月14日

上次提交的符合 QC 标准的更新

2017年6月22日

最后验证

2017年6月1日

更多信息

与本研究相关的术语

计划个人参与者数据 (IPD)

计划共享个人参与者数据 (IPD)?

未定

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

3
订阅