此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

Multi-Tracer Pet Quantitation of Insulin Action

2017年7月28日 更新者:Bret Goodpaster、University of Pittsburgh

We are proposing a clinical investigation of the pathogenesis of insulin resistance (IR) in skeletal muscle and adipose tissue (AT), focusing specifically on the contributions of glucose delivery, transport and phosphorylation. The primary methodology will be dynamic PET imaging, using three tracers that respectively portray the kinetics of glucose delivery, bi-directional trans-membrane glucose transport and glucose phosphorylation. The three tracers are: 1) [15O]-H2O for quantifying tissue perfusion, this portrays the kinetics of glucose delivery from plasma to tissue; 2) [11C]-3-O-methyl glucose, a tracer constrained to bi-directional trans-membrane glucose transport; and 3) [18F]-fluoro-deoxy glucose, which like [11C]-3-OMG is transported, but adds the subsequent metabolic step, that of glucose phosphorylation.

We propose 2 specific aims to apply this methodology to investigate the pathogenesis of IR. The 1st aim is to quantitatively assess the kinetics of glucose delivery, transport and phosphorylation in skeletal muscle in type 2 DM and as compared to obese and lean non-diabetic men and women. We will appraise the contribution of each step to the to the pathogenesis of IR. We postulate more severe IR in oxidative muscle, with a dual impairment of glucose transport and phosphorylation. The 2nd aim is to implement the triple-tracer dynamic PET imaging protocol in adipose tissue (AT), examining normal insulin action in non-obese volunteers and testing whether differences in AT insulin action are present in obese insulin sensitive volunteers compared to obese IR participants and the relation of AT IR to that of muscle and liver.

研究概览

地位

完全的

条件

详细说明

We propose a clinical investigation of the pathogenesis of insulin resistance (IR) in skeletal muscle and adipose tissue (AT) in obesity and diabetes mellitus, focusing on the separate and interactive roles of glucose delivery, bi-directional trans-membrane glucose transport and glucose phosphorylation. The primary methodology will be dynamic PET imaging, using three tracers that respectively portray the kinetics of glucose delivery, transport and phosphorylation. The three tracers are: 1) [15O]-H2O for quantifying tissue perfusion, this parameter together with glucose concentration portrays the kinetics of glucose delivery from plasma to tissue interstitial space; 2) [11C]-3-O-methyl glucose, a tracer constrained to bi-directional trans-membrane glucose transport; and 3) [18F]-fluoro-deoxy glucose, which like [11C]-3-OMG is transported, but adds the subsequent metabolic step, that of glucose phosphorylation.

In our recently completed studies, we implemented this triple-tracer dynamic PET imaging protocol to investigate insulin action in lean, healthy individuals 1-3. Rates of glucose uptake can be obtained by other methods (e.g. the glucose clamp, arterio-venous limb balance). What is uniquely valuable with dynamic PET imaging is acquisition of a temporal plot of tracer uptake, one that is obtained within an organ rather than derived from plasma determinations. These tissue-time activity curves provide information to assess the velocity of metabolic steps. By doing this for each of the three tracers, assessment can be made of which among glucose delivery, transport and phosphorylation is rate-controlling, or more properly, how rate control is distributed amongst these steps. The triple-tracer procedure has provided novel, quantitative insight on the action of insulin to change this distribution of control, a re-distribution triggered in healthy individuals by robust activation of glucose transport. Robust activation of glucose transport increases permeability of muscle to glucose sufficiently that delivery manifests greater rate limitation than during basal conditions. Also, we have coupled PET bio-imaging with MRI to study specific muscles 1, 3. This approach has yielded provocative and unanticipated new findings. Unlike in lean non-diabetics, in whom oxidative muscle is more insulin sensitive (as widely demonstrated in animal studies), in type 2 and in type 1 DM, oxidative muscle is more severely IR. We are encouraged that this bio-imaging methodology will enable new insight into the pathogenesis of IR in skeletal muscle and that the approach can be successfully adapted for in vivo investigation of adipose tissue metabolism.

The 1st specific aim is to quantitatively assess the contribution of glucose delivery, transport and phosphorylation to the pathogenesis of skeletal muscle IR in type 2 DM and obesity.

The 2nd specific aim is to implement triple-tracer dynamic PET imaging to study insulin action in gluteal-femoral adipose tissue (GF-AT) of non-obese and obese women, investigating among the latter group mechanisms of IR of GF-AT, and the role that GF-AT IR may have in differentiating obese insulin-sensitive (OB-InS) from obese insulin-resistant (OB-IR) women.

Experiment Synopsis: During the past year, in pilot studies, we initiated PET imaging procedures for AT, using [18F]-FDG. We now propose full development of the triple tracer methodology in GF-AT. Non-obese and obese women will be studied, the latter recruited to form groups of obese insulin-sensitive (OB-IS) and obese insulin-resistant (OB-IR). Triple-tracer PET imaging will be done during basal and insulin stimulated conditions, using an infusion rate of 20 mU/min-m2. Complementary assessments will include: a) MRI and DXA to measure the quantity of fat-mass (FM), GF-AT, abdominal adipose depots (ABD-SAT and VAT); b) endogenous glucose production (EGP) assessed using a primed, constant infusion of [6,6] d2-glucose; c) an adipokine profile; and d) a needle biopsy of GF-AT for histological and other analyses.

研究类型

观察性的

注册 (实际的)

30

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习地点

    • Pennsylvania
      • Pittsburgh、Pennsylvania、美国、15213
        • University of Pittsburgh

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

30年 至 55年 (成人)

接受健康志愿者

是的

有资格学习的性别

全部

取样方法

概率样本

研究人群

Normal volunteer sample

描述

Inclusion Criteria:

Male and Female Normal Weight - non-diabetic (BMI 19-25) Overweight/Obese - non-diabetic (BMI 27-38) Type 2 DM (BMI 27-38)

Fasting lab glucose < 100 mg/dl (non-diabetic groups) HbA1c < 6.0 (non-diabetic group) HbA1c < 8.5 (diabetic group)

Ulnar artery patent bilaterally Negative urine pregnancy test Non-smoker Independent in self blood glucose monitoring (diabetic group)

Exclusion Criteria:

BP > 150 mmHg systolic or > 95 mmHg diastolic History of any heart disease, including MI, pacemaker History of PVD, (including diminishing pulses) liver disease, kidney disease, pulmonary disease, neuromuscular disease, neurological disease, thyroid disease or any drug or alcohol abuse.

Current malignancy or history of cancer within the past 5 years Proteinuria 1+ or greater Hematocrit < 34% sTSH >8 ALT > 60; AST > 60; Alk Phos > 150 Total cholesterol > 250 Triglycerides > 300

MEDICATIONS:

Chronic medications that can alter glucose homeostasis: oral glucocorticoids, nicotinic acid (Birth control medications are okay and will not exclude) Thiazolidinediones or insulin, previous difficulty with lidocaine (xylocaine) Gained or lost more than 3 kg during the past 3 months Involved in regular exercise > 1 day/week Surgical or vascular implants, any metal in body, claustrophic Currently pregnant OR currently lactating

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

队列和干预

团体/队列
1
Normal Weight
2
Obese without diabetes
3
Obese with diabetes

研究衡量的是什么?

主要结果指标

结果测量
措施说明
大体时间
Physiological measurement; Differences in tissue insulin-stimulated glucose uptake used by PET imaging among normal weight, obese and patients with type 2 diabetes
大体时间:Rate of glucose disposal during steady-state insulin stimulated conditions (hyperinsulinemia obtained via insulin infusions)
PET-derived measures of muscle glucose uptake across three study groups - normal weight, obese and patients with type 2 diabetes (cross-sectional)
Rate of glucose disposal during steady-state insulin stimulated conditions (hyperinsulinemia obtained via insulin infusions)

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

调查人员

  • 首席研究员:Bret H Goodpaster, PhD、University of Pittsburgh

出版物和有用的链接

负责输入研究信息的人员自愿提供这些出版物。这些可能与研究有关。

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始

2007年7月1日

初级完成 (实际的)

2012年6月1日

研究完成 (实际的)

2012年6月1日

研究注册日期

首次提交

2008年7月10日

首先提交符合 QC 标准的

2008年7月14日

首次发布 (估计)

2008年7月15日

研究记录更新

最后更新发布 (实际的)

2017年8月1日

上次提交的符合 QC 标准的更新

2017年7月28日

最后验证

2017年7月1日

更多信息

与本研究相关的术语

关键字

其他研究编号

  • PRO 07080301

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

3
订阅