此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

the PRECious Trial: PREdiction of Complications (PRECious)

2020年11月5日 更新者:J. Straatman、Amsterdam UMC, location VUmc

PREdiction of Complications: A Step-up Approach, CRP First Followed by CT-scan Imaging to Ensure Quality Control After Major Abdominal Surgery

20% of patients who undergo major abdominal surgery will have a major complication, which requires invasive treatment and is associated with increased mortality, morbidity, hospital stay and intensive care stay. A quality control algorithm after Major Abdominal Surgery (MAS) aimed at early identification of patients at risk of developing major complications can decrease associated morbidity and mortality. Literature studies show promising results for C-reactive protein as an early marker for postoperative complications, however clinical significance has yet to be determined. Here the investigators propose a randomized clinical trial in order to determine the effect of postoperative monitoring with standardized CRP measurements on postoperative morbidity and mortality, if CRP levels exceed 140 mg/L additional CT-scan imaging will be conducted.

研究概览

地位

完全的

干预/治疗

详细说明

Major Abdominal Surgery (MAS) may be defined as a surgical resection performed on colorectal, hepato-pancreatico-biliary and upper-GI organs with either primary anastomosis and/or ostomy. In patients undergoing MAS postoperative complications are reported in up to 40% of patients. Around 20% of all MAS patients have a major complication, which requires invasive treatment such as reoperation, percutaneous drainage and intensive care admission. Major complications further increase morbidity and mortality after major abdominal surgery, leading to longer intensive care and hospital stay, unplanned open procedures and creation of ostomies and possible increased cancer recurrence rates and costs.

In current postoperative practice median time to clinical diagnosis of a postoperative complication is approximately eight days. A delay in diagnosis of complications increases morbidity and mortality related to major complications. Whereas early diagnosis of postoperative septic complications, before clinical deterioration, is associated with a decrease in the associated morbidity and mortality. An early detection of septic complications is challenging and may clinically and serologically, as well while using imaging techniques, be hard to distinguish from the physiological and postoperative systemic inflammatory response syndrome (SIRS). Furthermore clinical risk assessment appears to have a low predictive value for major complications such as anastomotic leak. This further stresses the need for a standardized Quality Control algorithm after MAS.

Noteworthy is that nowadays no standard Quality Control tests or protocols are available after MAS to differentiate between a normal and a complicated postoperative course.

In the search for a marker in early diagnosis of postoperative complications several biomarkers have been assessed, such as interleukin 6 (IL-6), Tumour necrosis factor α (TNF-α), procalcitonin, white blood cell count (WBC) and C-reactive protein (CRP).

WBC showed no significant differences between patients with an uncomplicated versus complicated postoperative course. WBC is therefore not useful in a standardized quality control algorithm. Procalcitonin, IL-6 and TNF-α have been assessed as markers of postoperative sepsis. However, compared to CRP they achieve similar results in predicting major complications after MAS. Moreover, taking into account the higher cost and limited availability of testing for procalcitonin, IL-6 and TNF-α levels, we further focussed on the use of CRP in a postoperative standardized quality control algorithm.

CRP is well established as a marker for infections and complications and showed promising results . It is an acute phase protein, synthesized in the liver, under stimulation of IL-6 and TNF-α in inflammatory processes, which amongst others enhances phagocytosis of bacteria by macrophages. In healthy individuals, CRP level is <1 mg/L. In mild inflammation it can rapidly reach over 40 mg/L and even over 400 mg/L have been detected in severe inflammatory response, sepsis or burns. CRP levels are also raised as a consequence of operative trauma, and it is even suggested that the level of postoperative CRP is proportional to the length of the operation, amount of operative trauma and intra-operative complications . A peak in postoperative CRP levels is observed 48-72 hours after surgery. In uneventful cases, the levels decrease after this peak. Furthermore, plasma half-life of CRP is 19 hours and is independent of diet, diurnal rhythm or organ function. Circulating CRP levels are therefore only determined by their rate of synthesis. Based on these characteristics, CRP might be a promising valuable marker for the grade of inflammation related to postoperative complications.

Several studies have assessed the use of CRP as a marker for postoperative complications after major abdominal surgery. Established cut-off CRP levels serving as markers for infective complications range from 140 mg/L to 170 mg/L on postoperative day (POD) 3. Regarding anastomotic leakage in colorectal patients, the cut-off for CRP levels have been proposed at 190 mg/L on POD 3and 125 mg/l for POD 4. Published variations in cut-offs for CRP levels are related to differing positive and negative predictive values.

The largest retrospective series included 1187 patients that had undergone colorectal surgery. They calculated a cut-off of 123 mg/L as a marker for all septic complications, yet they did not differentiate between minor and major complications. A recent meta-analysis established a cut-off of 172 mg/l on POD 3 as a marker for anastomotic leakage. Definitions regarding anastomotic leak vary widely among literature, which limits reproducibility and excludes patients that require re-intervention for other complications. Therefore our interest lies in diagnosing all major complications that require invasive treatment, as classified by grades 3-5 in the Clavien Dindo classification.

Based on our own systematic review and pooled-analysis of 1427 patients that underwent MAS, a level of 140 mg/l is proposed as cut-off for postoperative days 3,4 and 5 as a marker for major complications, with an overall sensitivity of 81,7% and a sensitivity of 61,6% Serum CRP is non-specific for location, thus additional imaging is required. Computed Tomography (CT) is the current imaging modality of choice. In our retrospective data, CT-scans showed a sensitivity of 91,7% and specificity of 100% for diagnosis of major complications, this is conformed in literature. Moreover, in the study conducted by Eckmann et al. CT-scan imaging showed a sensitivity of 97%. Another recent study established CT-scan imaging as the preferred modality in diagnosis of anastomotic leakage.

In 2008, Den Dulk et al. implemented a standardized scoring system for the clinical status of patients undergoing colorectal surgery. With this system they decreased the time between surgery and diagnosis of anastomotic leakage from 8 to 6 days, thereby decreasing mortality from 39% to 24% (p=0,24). Further supporting the role for a standardized postoperative quality control algorithm following MAS. However the search for an optimal algorithm continues.

CRP and CT scanning have shown to be able to differentiate between uncomplicated and complicated postoperative courses. Currently their use is only on demand. The here presented PRECious protocol is a postoperative Quality Control algorithm, which aims at early diagnosis and treatment of patients with major complications.

研究类型

介入性

注册 (实际的)

525

阶段

  • 不适用

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习地点

    • NH
      • Amsterdam、NH、荷兰、1081 HV
        • VU Medical Center

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

18年 及以上 (成人、年长者)

接受健康志愿者

有资格学习的性别

全部

描述

Inclusion Criteria:

  • Age equal to or above 18 years
  • Planned elective MAS
  • Written and oral informed consent

Exclusion Criteria:

  • Acute MAS
  • ASA classification equal to four or higher
  • Insufficient Dutch language skills
  • contrast allergies
  • glomerular filtration rate (GFR) < 60 ml/min/1,73m2

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

  • 主要用途:治疗
  • 分配:随机化
  • 介入模型:阶乘赋值
  • 屏蔽:无(打开标签)

武器和干预

参与者组/臂
干预/治疗
实验性的:Precious arm
Postoperative controls according to the PRECious protocol, which entails standardized measurement of CRP levels on postoperative day three, four and five. If CRP levels exceed 140 mg/l additional CT-scan imaging will be conducted.
Standardized measurement of serum CRP levels on postoperative day 3,4 and 5.
无干预:Control
Standard postoperative controls. Additional testing will only be conducted on demand.

研究衡量的是什么?

主要结果指标

结果测量
措施说明
大体时间
Morbidity and mortality after major complications
大体时间:one year

Combined Primary outcome, entailing both:

  1. Mortality; during 12 month follow-up
  2. Morbidity associated with major complications and after reoperation within 12 months after index operation. Including: Fistula, Wound dehiscence/incisional hernia/open abdomen, bowel obstruction or herniation, abscess, abdominal compartment syndrome, perforation of visceral organ, unplanned enterostomy, enterostomy dysfunction due to prolapse, stenosis or retraction, myocardial infarction, pulmonary embolus, respiratory insufficiency; necessitating mechanical ventilation, cerebrovascular accident, renal failure, urosepsis; urinary tract infection with positive urine and blood cultures and circulatory shock, upper GI bleeding needing intervention of any type, intra-abdominal bleeding, anastomotic leak after relaparotomy
one year

次要结果测量

结果测量
措施说明
大体时间
Quality of life questionnaires
大体时间:3,5 days, 3 and 12 months postoperatively
Quality of life questionnaires will be conducted 3 and 5 days postoperatively, and during follow-up after 3 and 12 months. Questionnaires consist of the EQ-5D (EuroQol), SF-36 (Short-Form 36) and GIQLI (GastroInstestinal Quality of Life Index).
3,5 days, 3 and 12 months postoperatively
Add-on value of CRP
大体时间:postoperative days 3,4 and 5
During rounds, before CRP levels are measured, the attending physician grades patients on a scale of 1 to 10 (one being a healthy patient, ten being a patient at risk of acute death).
postoperative days 3,4 and 5
Length of stay
大体时间:Up to one year after randomization
total length of hospital stay in days (n)
Up to one year after randomization
Length of Intensive Care admission
大体时间:up to one year after randomization
total stay on the Intensive Care Unit in days (n)
up to one year after randomization
Cost-efficiency
大体时间:one year
Total costs in both study arms regarding surgery, admission, additional testing, re-interventions
one year

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

调查人员

  • 首席研究员:Jennifer Straatman, MD、VU Medisch Centrum
  • 首席研究员:Donald van der Peet, MD, PhD、VU Medisch Centrum

出版物和有用的链接

负责输入研究信息的人员自愿提供这些出版物。这些可能与研究有关。

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始

2015年12月1日

初级完成 (实际的)

2020年5月1日

研究完成 (实际的)

2020年9月1日

研究注册日期

首次提交

2014年3月19日

首先提交符合 QC 标准的

2014年3月28日

首次发布 (估计)

2014年4月2日

研究记录更新

最后更新发布 (实际的)

2020年11月6日

上次提交的符合 QC 标准的更新

2020年11月5日

最后验证

2020年11月1日

更多信息

与本研究相关的术语

其他相关的 MeSH 术语

其他研究编号

  • Pro14/23

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

3
订阅