此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

Systematic Review and Meta-analysis of the Differential Effects of DHA and EPA on Inflammation

2022年8月15日 更新者:Benoit Lamarche、Laval University

Do Docosahexaenoic and Eicosapentaenoic Acids Have Similar Effects on Inflammation Markers? A Systematic Review and Meta-analysis of Randomized Controlled Trials

According to the World Health Organization, cardiovascular diseases (CVDs) are the number 1 cause of death globally. Systemic and local tissue inflammation is now recognized as a key etiological process leading to CVD. Hence, elevated blood levels of inflammation markers are classified among the well-established risk factors for the development of CVD. Among nutritional strategies to prevent and/or reduce chronic inflammation, long-chain omega 3 PUFA (LCn-3PUFA), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have raised tremendous interest for their purported anti-inflammatory effects. Previous meta-analysis of randomized controlled trials (RCTs) substantiated the anti-inflammatory effect of LCn-3PUFA supplementation as evidenced by significant reductions in plasma concentrations of specific inflammation markers such as C-reactive protein (CRP) and tumor necrosis factor alpha (TNF-alpha). However, it is stressed that almost all of the reported RCTs have used a mix of EPA and DHA in various ratios, as EPA and DHA occur concomitantly and naturally in food (fish oils) and in most dietary supplements. Yet, several recent RCTs have recently been undertaken to test the hypothesis that not all LCn-3PUFAs are equal, at least when it comes to their anti-inflammatory effects. Accordingly, there is increasing interest and evidence for potential distinctive effects of DHA compared to EPA on systemic inflammation, raising the question: Is DHA a more potent anti-inflammatory nutrient than EPA? To formally answer this question, we will conduct a systematic review and meta-analysis of RCTs to assess and compare the individual anti-inflammatory effects of DHA and of EPA. The present work will be a pairwise and network meta-analysis focusing on RCTs comparing the effects of EPA and DHA on surrogate markers of systemic inflammation. The findings generated by these analyses will provide invaluable and timely comparative information on the specific efficacy of DHA and EPA as one of the key nutritional modalities for the treatment of chronic inflammation in high-risk men and women. This is important considering that LCn-3PUFA supplements are increasingly being used by the population and an ever growing market in the dietary supplements' industry.

研究概览

详细说明

Background: Increased systemic inflammation is positively correlated with the risk for CVD. Among nutritional strategies to prevent and/or reduce chronic inflammation, long-chain omega 3 PUFA (LCn-3PUFA), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have raised tremendous interest for their purported anti-inflammatory effects.

Need for the proposed research: New emerging data from RCTs suggesting distinct effects of DHA and EPA on systemic inflammation calls for a formal analysis of existing data through a systematic review and meta-analysis, which are considered the gold standard of evidence to inform dietary guidelines.

Objective: To conduct a pairwise and network meta-analysis of RCTs in humans to compare the effects of DHA and EPA on surrogate markers of inflammation.

Design: This systematic review and meta-analysis will be conducted according to the Cochrane Handbook for Systematic Reviews of Interventions and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and The PRISMA Extension Statement for conducting Network Meta-analyses.

Data sources: MEDLINE, EMBASE and The Cochrane Library will be searched using appropriate search terms.

Study selection: RCTs of ≥7 days duration that have specifically compared the effects of DHA to those of EPA, or RCTs that have assessed the effects of DHA or EPA individually compared with a placebo (control), in which changes in plasma concentration of inflammatory markers, namely C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha) and adiponectin, were study outcomes. Literature published in languages other than English or French will be not considered.

Data extraction: Titles and abstracts of studies retrieved using the search strategy will be screened independently by two investigators to identify studies that potentially meet the inclusion criteria outlined above. The full text of these potentially eligible studies will be retrieved and independently assessed for eligibility by two investigators with disagreements being resolved by consensus. Extracted information will include: first author's name, publication year, study design, sample size, subject characteristics (for example sex, age, health and body weight status), EPA and DHA doses, EPA and DHA forms, trial duration, composition of the control supplement, inflammation markers studied and the statistical approach for data analysis. Mean ± SEM differences between various treatments will be extracted for all endpoints. Standard computations and imputations will be used to derive missing variance data. Risk of bias will be assessed using the Cochrane Risk of Bias Tool. The overall quality and strength of the evidence for each outcome will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Risk of bias for network meta-analysis will incorporate assessment of transitivity.

Outcomes: Four outcomes will be assessed: 1) plasma CRP 2) plasma IL-6, 3) plasma TNF-alpha and 4) plasma adiponectin.

Data synthesis: We will use standard Cochrane methods for pairwise meta-analysis and augment this evidence using network meta-analysis methods. Mean differences will be pooled for direct comparisons (DHA vs. EPA) using DerSimonian and Laird random-effects model will be used even in the absence of statistically significant between-study heterogeneity, as they yield more conservative summary effect estimates in the presence of residual heterogeneity. We will present the pooled estimates as mean differences and 95% confidence intervals. We will perform a frequentist network meta-analysis using multivariate meta-analysis model using 'network' suite of commands available in STATA. Mean differences will be pooled for direct comparisons (DHA vs. EPA) and indirect comparisons (DHA vs. placebo and EPA vs. placebo using placebo as the common comparator). We will present the contribution of direct and indirect evidence to mixed evidence using contribution plots. Assumption of consistency will be tested using design-by-treatment model. Paired analyses will be applied for crossover trials. Heterogeneity will be assessed by the Cochran Q statistic and quantified by the I2. To explore sources of heterogeneity, we will conduct sensitivity analyses, in which each study is systematically removed. If there are more than 10 studies, we will also explore sources of heterogeneity using meta-regression analyses and a priori defined subgroup analyses such as body weight status (normal-weight, overweight, obese), health status (for example diabetes, CVD), age, sex, dose, baseline measurements for each outcome, study design (parallel, crossover), study duration, risk of bias, and individual domains of risk of bias. Meta-regression analyses will assess the significance of categorical and continuous subgroup analyses. When more than 10 studies are available, publication bias will be investigated by inspection of funnel plots and formal testing using the Egger test and the Begg test. If publication bias is suspected, we will attempt to adjust for funnel plot asymmetry by imputing the missing study data using the Duval and Tweedie trim and fill method.

Knowledge translation plan: Results from this systematic review and meta-analysis will be disseminated through traditional means such as interactive presentations at local, national, and international scientific meetings and publication in high impact factor journals. Target audiences will include the public health and scientific communities with interest in nutrition, inflammation, and CVD.

Significance: The findings generated by this analysis will provide invaluable and timely comparative information on the specific efficacy of DHA and EPA as one of the key nutritional modalities for the treatment of chronic inflammation in high-risk men and women. This is important considering that LCn-3PUFA supplements are increasingly being used by the population and an ever growing market in the dietary supplements' industry.

研究类型

观察性的

注册 (实际的)

1

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习地点

      • Quebec、加拿大、G1V 0A6
        • Institute of Nutrition and Functional Foods (INAF)

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

18年 及以上 (成人、年长者)

接受健康志愿者

是的

有资格学习的性别

全部

取样方法

概率样本

研究人群

Adult population (18 years old and older) regardless of health status.

描述

Inclusion Criteria:

  • Randomized controlled trials of ≥7 days duration in humans
  • Suitable control (i.e. fatty acids other than EPA and DHA as control)
  • Adults (18 years old and older)
  • Viable outcome data

Exclusion Criteria:

  • Non-human studies
  • Non-randomized treatment allocation
  • Randomized controlled trials of <7 days duration
  • Lack of a suitable control
  • Children
  • No viable outcome data

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

队列和干预

团体/队列
docosahexaenoic acid (DHA)
Adults supplemented with DHA in a randomized controlled trial of ≥7 days duration
eicosapentaenoic acid (EPA)
Adults supplemented with EPA in a randomized controlled trial of ≥7 days duration
control
Adults supplemented with control fatty acids in a randomized controlled trial of ≥7 days duration assessing the effects of EPA and/or DHA

研究衡量的是什么?

主要结果指标

结果测量
措施说明
大体时间
Change in plasma concentration of CRP
大体时间:Baseline and up to 5 years
Change in fasting plasma concentration of CRP with DHA vs. EPA or DHA vs. control or EPA vs. control
Baseline and up to 5 years
Change in plasma concentration of IL-6
大体时间:Baseline and up to 5 years
Change in fasting plasma concentration of IL-6 with DHA vs. EPA or DHA vs. control or EPA vs. control
Baseline and up to 5 years
Change in plasma concentration of TNF-alpha
大体时间:Baseline and up to 5 years
Change in fasting plasma concentration of TNF-alpha with DHA vs. EPA or DHA vs. control or EPA vs. control
Baseline and up to 5 years
Change in plasma concentration of adiponectin
大体时间:Baseline and up to 5 years
Change in fasting plasma concentration of adiponectin with DHA vs. EPA or DHA vs. control or EPA vs. control
Baseline and up to 5 years

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

出版物和有用的链接

负责输入研究信息的人员自愿提供这些出版物。这些可能与研究有关。

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始 (实际的)

2018年4月16日

初级完成 (实际的)

2020年2月1日

研究完成 (实际的)

2020年4月1日

研究注册日期

首次提交

2018年4月17日

首先提交符合 QC 标准的

2018年5月8日

首次发布 (实际的)

2018年5月9日

研究记录更新

最后更新发布 (实际的)

2022年8月18日

上次提交的符合 QC 标准的更新

2022年8月15日

最后验证

2022年8月1日

更多信息

与本研究相关的术语

药物和器械信息、研究文件

研究美国 FDA 监管的药品

研究美国 FDA 监管的设备产品

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

3
订阅