Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study

Leo Ai, Priya Bansal, Jerel K Mueller, Wynn Legon, Leo Ai, Priya Bansal, Jerel K Mueller, Wynn Legon

Abstract

Background: Transcranial focused ultrasound (tFUS) is a new non-invasive neuromodulation technique that uses mechanical energy to modulate neuronal excitability with high spatial precision. tFUS has been shown to be capable of modulating EEG brain activity in humans that is spatially restricted, and here, we use 7T MRI to extend these findings. We test the effect of tFUS on 7T BOLD fMRI signals from individual finger representations in the human primary motor cortex (M1) and connected cortical motor regions. Participants (N = 5) performed a cued finger tapping task in a 7T MRI scanner with their thumb, index, and middle fingers to produce a BOLD signal for individual M1 finger representations during either tFUS or sham neuromodulation to the thumb representation.

Results: Results demonstrated a statistically significant increase in activation volume of the M1 thumb representation for the tFUS condition as compared to sham. No differences in percent BOLD changes were found. This effect was spatially confined as the index and middle finger M1 finger representations did not show similar significant changes in either percent change or activation volume. No effects were seen during tFUS to M1 in the supplementary motor area or the dorsal premotor cortex.

Conclusions: Single element tFUS can be paired with high field MRI that does not induce significant artifact. tFUS increases activation volumes of the targeted finger representation that is spatially restricted within M1 but does not extend to functionally connected motor regions. Trial registration ClinicalTrials.gov NCT03634631 08/14/18.

Keywords: 7T fMRI; BOLD; Human; Motor cortex; Neuromodulation; Ultrasound.

Figures

Fig. 1
Fig. 1
a Schematic of the fMRI experimental protocol. Finger movement (thumb, middle, index) was visually cued at 1 Hz across the on blocks. A total of nine 30 s on blocks were collected (3 for each finger) interspersed with 30 s rest blocks. Within each on block transcranial focused ultrasound (tFUS) was delivered every two TRs (2.75 s). b Schematic of the ultrasound pulsing strategy. PRF pulse repetition frequency, Af acoustic frequency
Fig. 2
Fig. 2
a Pseudocolor XY plot of ultrasound pressure profile normalized to peak pressure. b XYZ line plots of ultrasound pressure profile normalized to peak pressure. Vertical dashed red lines denote − 3 dB pressure. Note: Red arrow in Z-plot indicates direction of ultrasound from face of transducer (0 mm)
Fig. 3
Fig. 3
a 7T anatomical T1 (left, middle) and functional EPI image showing ultrasound transducer. b Overlay of functional MRI thumb activation and acoustic model of the ultrasound beam on subject anatomical T1 scan. Note in right image ultrasound beam is purposefully displaced from the fMRI thumb activation to better show relative size compared to fMRI activation. c Blowup of single subject fMRI BOLD finger representations with overlaid acoustic model that is purposefully displaced to show relative size of ultrasound beam to fMRI activations. For experiments, tFUS would have been placed directly over the thumb activation
Fig. 4
Fig. 4
a Individual subject fMRI BOLD thumb activity in primary motor cortex during sham and tFUS neuromodulation. b Group (N = 5) fMRI BOLD M1 volumes for sham and tFUS neuromodulation. *p < 0.05

References

    1. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–329. doi: 10.1038/nn.3620.
    1. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Tillery SI, Tyler WJ. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66(5):681–694. doi: 10.1016/j.neuron.2010.05.008.
    1. King RL, Brown JR, Newsome WT, Pauly KB. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol. 2013;39(2):312–331. doi: 10.1016/j.ultrasmedbio.2012.09.009.
    1. Mehic E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD. Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS ONE. 2014;9(2):e86939. doi: 10.1371/journal.pone.0086939.
    1. Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, McDannold NJ, Pascual-Leone A, Jolesz FA. Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011;56(3):1267–1275. doi: 10.1016/j.neuroimage.2011.02.058.
    1. Dallapiazza RF, Timbie KF, Holmberg S, Gatesman J, Lopes MB, Price RJ, Miller GW, Elias WJ. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg. 2017;128:1–10.
    1. Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol. 2013;23(23):2430–2433. doi: 10.1016/j.cub.2013.10.029.
    1. Ai L, Mueller J, Grant A, Eryaman Y, Legon W. Transcranial focused ultrasound for BOLD fMRI signal modulation in humans. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016, p. 1758–61. 10.1109/embc.2016.7591057.
    1. Legon W, Ai L, Bansal P, Mueller JK. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 2018;00:1–12.
    1. Lee W, Kim H, Jung Y, Song IU, Chung YA, Yoo SS. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep. 2015;5:8743. doi: 10.1038/srep08743.
    1. Lee W, Kim HC, Jung Y, Chung YA, Song IU, Lee JH, Yoo SS. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016;6:34026. doi: 10.1038/srep34026.
    1. Lee W, Chung YA, Jung Y, Song IU, Yoo SS. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016;17(1):68. doi: 10.1186/s12868-016-0303-6.
    1. Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep. 2018;8:10007. doi: 10.1038/s41598-018-28230-1.
    1. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMS Consensus Group: safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–2039. doi: 10.1016/j.clinph.2009.08.016.
    1. Kim Y, Maxwell AD, Hall TL, Xu Z, Lin KW, Cain CA. Rapid prototyping fabrication of focused ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(9):1559–1574. doi: 10.1109/TUFFC.2014.3070.
    1. Bungert A, Chambers CD, Long E, Evans CJ. On the importance of specialized radiofrequency filtering for concurrent TMS/MRI. J Neurosci Methods. 2012;210(2):202–205. doi: 10.1016/j.jneumeth.2012.07.023.
    1. Garcia-Rodriguez M, Garcia-Alvarez J, Yanez Y, Garcia-Hernandez J, Salazar A, Turo A, Chavez JA. Low cost matching network for ultrasonic transducers. Phys Procedia. 2010;3(1):1025. doi: 10.1016/j.phpro.2010.01.132.
    1. Mueller JK, Ai L, Bansal P, Legon W. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J Neural Eng. 2017 doi: 10.1088/1741-2552/aa843e.
    1. Mueller JK, Ai L, Bansal P, Legon W. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation. J Neural Eng. 2016;13(5):056002-2560/13/5/056002. doi: 10.1088/1741-2560/13/5/056002.
    1. Spitzer VM, Whitlock DG. The Visible Human Dataset: the anatomical platform for human simulation. Anat Rec. 1998;253(2):49–57. doi: 10.1002/(SICI)1097-0185(199804)253:2<49::AID-AR8>;2-9.
    1. Treeby BE, Cox BT. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010;15(2):021314. doi: 10.1117/1.3360308.
    1. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–173. doi: 10.1006/cbmr.1996.0014.
    1. Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 2014;7(6):900–908. doi: 10.1016/j.brs.2014.08.008.
    1. Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol. 2007;17(15):1275–1285. doi: 10.1016/j.cub.2007.06.066.
    1. Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen MC. Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron. 2011;69(3):572–583. doi: 10.1016/j.neuron.2010.11.044.
    1. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8(1):45–56. doi: 10.1038/nrn2044.
    1. Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–225. doi: 10.1146/annurev-neuro-062111-150444.
    1. Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, Fischer K, Maeng LS, Yoo SS. Image-guided focused ultrasound-mediated regional brain stimulation in sheep. Ultrasound Med Biol. 2016;42(2):459–470. doi: 10.1016/j.ultrasmedbio.2015.10.001.
    1. Guo H, Hamilton M, Offutt S, Gloeckner C, Li T, Kim Y, Legon W, Alford JK, Lim HH. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron. 2018;98(5):1020.e4–1030.e4. doi: 10.1016/j.neuron.2018.04.036.
    1. Kim H, Chiu A, Lee SD, Fischer K, Yoo SS. Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters. Brain Stimul. 2014;7(5):748–756. doi: 10.1016/j.brs.2014.06.011.
    1. Plaksin M, Kimmel E, Shoham S. Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation. eNeuro. 2016 doi: 10.1523/eneuro.0136-15.2016.
    1. Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist. 2011;17(1):25–36. doi: 10.1177/1073858409348066.
    1. Krasovitski B, Frenkel V, Shoham S, Kimmel E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci USA. 2011;108(8):3258–3263. doi: 10.1073/pnas.1015771108.
    1. Kubanek J, Shi J, Marsh J, Chen D, Deng C, Cui J. Ultrasound modulates ion channel currents. Sci Rep. 2016;6:24170. doi: 10.1038/srep24170.
    1. Prieto ML, Butrus KF, Khuri-Yakub T, Maduke M. Mechanical activation of piezo1 but not Nav1.2 channels by ultrasound. biorxiv 2017.
    1. Legon W, Bansal P, Ai L, Mueller JK, Meekins G, Gillick B. Safety of transcranial focused ultrasound for human neuromodulation. Bioarxiv 2018.
    1. Opitz A, Fox MD, Craddock RC, Colcombe S, Milham MP. An integrated framework for targeting functional networks via transcranial magnetic stimulation. Neuroimage. 2016;127:86–96. doi: 10.1016/j.neuroimage.2015.11.040.
    1. Kaye EA, Chen J, Pauly KB. Rapid MR-ARFI method for focal spot localization during focused ultrasound therapy. Magn Reson Med. 2011;65(3):738–743. doi: 10.1002/mrm.22662.

Source: PubMed

3
订阅