Impact of cytokine release on ventricular function after hepatic reperfusion: a prospective observational echocardiographic study with tissue Doppler imaging

Marco P Zalunardo, Martin Schläpfer, Beatrice Beck-Schimmer, Burkhardt Seifert, Donat R Spahn, Dominique Bettex, Marco P Zalunardo, Martin Schläpfer, Beatrice Beck-Schimmer, Burkhardt Seifert, Donat R Spahn, Dominique Bettex

Abstract

Background: Postreperfusion syndrome and haemodynamic instability are predictors for poor outcome after liver transplantation. Cytokine release has been claimed to be responsible for postreperfusion syndrome. However, the underlying pathophysiologic mechanism is not clarified. The aim of this prospective observational study was to correlate cardiac performance (measured by transoesophageal echocardiography (TEE), Doppler and Tissue Doppler Imaging (TDI)) to plasmatic cytokines: IL-6, IL-8, CXCL1, TGF-β and CD40L at 5 different time points during liver transplantation.

Methods: Seventeen consecutive patients scheduled for orthotopic liver transplantation, age 18 to 75 years without contraindication for transoesophageal echocardiography were included. Patients were monitored with TEE and TDI. Systolic and diastolic cardiac function, MAP, MPAP, CVP, PCWP, CO and blood samples for cytokine assays were recorded or collected after induction, 15 min after vena cava inferior clamping, 2 to 5 min after reperfusion, 60 min after reperfusion and at the end of surgery.

Results: Mean arterial pressure and catecholamine requirements remained unchanged, MPAP, CVP and CO increased, SVR decreased after unclamping. Postreperfusion syndrome did not develop. The haemodynamic parameters and the variations of TEE parameters were consistent with the volume load changes during clamping and declamping and did not reveal systolic or diastolic cardiac dysfunction. All cytokines, except TGF-β, increased.

Conclusion: These findings suggest, that significant cytokine release during liver transplantation is not necessarily coincident with haemodynamic instability and impaired cardiac function.

Trial registration: ClinicalTrials.gov: NCT00547924.

Figures

Fig. 1
Fig. 1
Haemodynamic parameters. Mean arterial pressure (a), cardiac output (b) and systemic vascular resistance (c) at the different time points of the study. ¶ increase of cardiac output from a baseline to c immediate reperfusion (p < 0,001). § increase of cardiac output from b clamping the vena cava inferior to c immediate reperfusion (p < 0,001). + increase of systemic vascular resistance from a baseline to b clamping the vena cava inferior (p = 0,004). # decrease of systemic vascular resistance from a baseline to c immediate reperfusion (p = 0,002). ‡ decrease of systemic vascular resistance from b clamping the vena cava inferior to c immediate reperfusion (p < 0,001)

References

    1. Aggarwal S, Kang Y, Freeman JA, Fortunato FL, Jr, Pinsky MR. Postreperfusion syndrome: hypotension after reperfusion of the transplanted liver. J Crit Care. 1993;8(3):154–160. doi: 10.1016/0883-9441(93)90021-C.
    1. Fukuzawa K PE. The Post-Reperfusion Syndrome: Diagnosis, Incidence and Management. In: Liver Transplantation - Basic Issues. edn. Edited by H A. Winchester GB: Intech Open Science; 2012:385–96.
    1. Bezinover D, Kadry Z, Uemura T, Sharghi M, Mastro AM, Sosnoski DM, Dalal P, Janicki PK. Association between plasma cyclic guanosine monophosphate levels and hemodynamic instability during liver transplantation. Liver Transpl. 2013;19(2):191–198. doi: 10.1002/lt.23570.
    1. Nanashima A, Pillay P, Crawford M, Nakasuji M, Verran DJ, Painter D. Analysis of postrevascularization syndrome after orthotopic liver transplantation: the experience of an Australian liver transplantation center. J Hepatobiliary Pancreat Surg. 2001;8(6):557–563. doi: 10.1007/s005340100025.
    1. Hilmi I, Horton CN, Planinsic RM, Sakai T, Nicolau-Raducu R, Damian D, Gligor S, Marcos A. The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation. Liver Transpl. 2008;14(4):504–508. doi: 10.1002/lt.21381.
    1. Paugam-Burtz C, Kavafyan J, Merckx P, Dahmani S, Sommacale D, Ramsay M, Belghiti J, Mantz J. Postreperfusion syndrome during liver transplantation for cirrhosis: outcome and predictors. Liver Transpl. 2009;15(5):522–529. doi: 10.1002/lt.21730.
    1. Xu ZD, Xu HT, Yuan HB, Zhang H, Ji RH, Zou Z, Fu ZR, Shi XY. Postreperfusion syndrome during orthotopic liver transplantation: a single-center experience. Hepatobiliary Pancreat Dis Int. 2012;11(1):34–39. doi: 10.1016/S1499-3872(11)60123-9.
    1. Ayanoglu HO, Ulukaya S, Tokat Y. Causes of postreperfusion syndrome in living or cadaveric donor liver transplantations. Transplant Proc. 2003;35(4):1442–1444. doi: 10.1016/S0041-1345(03)00483-4.
    1. Ellis JE, Lichtor JL, Feinstein SB, Chung MR, Polk SL, Broelsch C, Emond J, Thistlethwaite JR, Roizen MF. Right heart dysfunction, pulmonary embolism, and paradoxical embolization during liver transplantation. A transesophageal two-dimensional echocardiographic study. Anesth Analg. 1989;68(6):777–782. doi: 10.1213/00000539-198906000-00016.
    1. Lichtor JL. Ventricular dysfunction does occur during liver transplantation. Transplant Proc. 1991;23(3):1924–1926.
    1. Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol. 1998;32(4):865–875. doi: 10.1016/S0735-1097(98)00345-3.
    1. Thys DM, Brooker RF, Cahalan MK, Connis RT, Duke PG, Nickinovich DG, et al. Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology. 2010; 112(5):1084–1096.
    1. Stehling LC, Dohterty DC, Faust RJ, Greenburg AG, Harrision CR, Launders DF, et al. Practice Guidelines for blood component therapy: A report by the American Society of Anesthesiologists Task Force on Blood Component Therapy. Anesthesiology. 1996;84(3):732–747.
    1. Chapman CB, Baker O, Reynolds J, Bonte FJ. Use of biplane cinefluorography for measurement of ventricular volume. Circulation. 1958;18(6):1105–1117. doi: 10.1161/01.CIR.18.6.1105.
    1. Teichholz LE, Cohen MV, Sonnenblick EH, Gorlin R. Study of left ventricular geometry and function by B-scan ultrasonography in patients with and without asynergy. N Engl J Med. 1974;291(23):1220–1226. doi: 10.1056/NEJM197412052912304.
    1. Brun P, Tribouilloy C, Duval AM, Iserin L, Meguira A, Pelle G, Dubois-Rande JL. Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J Am Coll Cardiol. 1992;20(2):420–432. doi: 10.1016/0735-1097(92)90112-Z.
    1. Oh JK, Hatle L, Tajik AJ, Little WC. Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography. J Am Coll Cardiol. 2006;47(3):500–506. doi: 10.1016/j.jacc.2005.09.032.
    1. Arques S, Roux E, Luccioni R. Current clinical applications of spectral tissue Doppler echocardiography (E/E’ ratio) as a noninvasive surrogate for left ventricular diastolic pressures in the diagnosis of heart failure with preserved left ventricular systolic function. Cardiovasc Ultrasound. 2007;5:16. doi: 10.1186/1476-7120-5-16.
    1. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation. 2000;102(15):1788–1794. doi: 10.1161/01.CIR.102.15.1788.
    1. De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, Schimmer RC, Klaghofer R, Neff TA, Schmid ER, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–1326. doi: 10.1097/ALN.0b013e3181a10731.
    1. Bezinover D, Kadry Z, McCullough P, McQuillan PM, Uemura T, Welker K, Mastro AM, Janicki PK. Release of cytokines and hemodynamic instability during the reperfusion of a liver graft. Liver Transpl. 2011;17(3):324–330. doi: 10.1002/lt.22227.
    1. Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97(1):215–252. doi: 10.1097/00000542-200207000-00030.
    1. Pathan N, Hemingway CA, Alizadeh AA, Stephens AC, Boldrick JC, Oragui EE, McCabe C, Welch SB, Whitney A, O’Gara P, et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004;363(9404):203–209. doi: 10.1016/S0140-6736(03)15326-3.
    1. Caorsi C, Quintana E, Valdes S, Munoz C. Continuous cardiac output and hemodynamic monitoring: high temporal correlation between plasma TNF-alpha and hemodynamic changes during a sepsis-like state in cancer immunotherapy. J Endotoxin Res. 2003;9(2):91–95.
    1. Rai R, Nagral S, Nagral A. Surgery in a patient with liver disease. J Clin Exp Hepatol. 2012;2(3):238–246. doi: 10.1016/j.jceh.2012.05.003.
    1. Moller S, Henriksen JH. Cirrhotic cardiomyopathy. J Hepatol. 2010;53(1):179–190. doi: 10.1016/j.jhep.2010.02.023.
    1. Birkmeyer JD, Finks JF, O’Reilly A, Oerline M, Carlin AM, Nunn AR, Dimick J, Banerjee M, Birkmeyer NJ. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–1442. doi: 10.1056/NEJMsa1300625.
    1. Arranz J, Soriano A, Garcia I, Garcia I, Concepcion MT, Navarro J, Arteaga A, Filella X, Bravo P, Barrera M, et al. Effect of proinflammatory cytokines (IL-6, TNF-alpha, IL-1beta) on hemodynamic performance during orthotopic liver transplantation. Transplant Proc. 2003;35(5):1884–1887. doi: 10.1016/S0041-1345(03)00603-1.
    1. Krag A, Bendtsen F, Dahl EK, Kjaer A, Petersen CL, Moller S. Cardiac function in patients with early cirrhosis during maximal beta-adrenergic drive: a dobutamine stress study. PloS One. 2014;9(10):e109179. doi: 10.1371/journal.pone.0109179.
    1. Silvestre OM, Bacal F, de Souza RD, Andrade JL, Furtado M, Pugliese V, Belleti E, Andraus W, Carrilho FJ, Carneiro D’Albuquerque LA, et al. Impact of the severity of end-stage liver disease in cardiac structure and function. Ann Hepatol. 2013;12(1):85–91.
    1. Krag A, Bendtsen F, Henriksen JH, Moller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut. 2010;59(1):105–110. doi: 10.1136/gut.2009.180570.
    1. Nazar A, Guevara M, Sitges M, Terra C, Sola E, Guigou C, Arroyo V, Gines P. LEFT ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J Hepatol. 2013;58(1):51–57. doi: 10.1016/j.jhep.2012.08.027.

Source: PubMed

3
订阅