ICU Blood Pressure Variability May Predict Nadir of Respiratory Depression After Coronary Artery Bypass Surgery

Anne S M Costa, Paulo H M Costa, Carlos E B de Lima, Luiz E M Pádua, Luciana A Campos, Ovidiu C Baltatu, Anne S M Costa, Paulo H M Costa, Carlos E B de Lima, Luiz E M Pádua, Luciana A Campos, Ovidiu C Baltatu

Abstract

Objectives: Surgical stress induces alterations on sympathovagal balance that can be determined through assessment of blood pressure variability. Coronary artery bypass graft surgery (CABG) is associated with postoperative respiratory depression. In this study we aimed at investigating ICU blood pressure variability and other perioperative parameters that could predict the nadir of postoperative respiratory function impairment.

Methods: This prospective observational study evaluated 44 coronary artery disease patients subjected to coronary artery bypass surgery (CABG) with cardiopulmonary bypass (CPB). At the ICU, mean arterial pressure (MAP) was monitored every 30 min for 3 days. MAP variability was evaluated through: standard deviation (SD), coefficient of variation (CV), variation independent of mean (VIM), and average successive variability (ASV). Respiratory function was assessed through maximal inspiratory (MIP) and expiratory (MEP) pressures and peak expiratory flow (PEF) determined 1 day before surgery and on the postoperative days 3rd to 7th. Intraoperative parameters (volume of cardioplegia, CPB duration, aortic cross-clamp time, number of grafts) were also monitored.

Results: Since, we aimed at studying patients without confounding effects of postoperative complications on respiratory function, we had enrolled a cohort of low risk EuroSCORE (European System for Cardiac Operative Risk Evaluation) with < 2. Respiratory parameters MIP, MEP, and PEF were significantly depressed for 4-5 days postoperatively. Of all MAP variability parameters, the ASV had a significant good positive Spearman correlation (rho coefficients ranging from 0.45 to 0.65, p < 0.01) with the 3-day nadir of PEF after cardiac surgery. Also, CV and VIM of MAP were significantly associated with nadir days of MEP and PEF. None of the intraoperative parameters had any correlation with the postoperative respiratory depression.

Conclusions: Variability parameters ASV, CV, and VIM of the MAP monitored at ICU may have predictive value for the depression of respiratory function after cardiac surgery as determined by peak expiratory flow and maximal expiratory pressure. ClinicalTrials.gov Identifier: NCT02074371.

Keywords: CABG; ICU; autonomic nervous system; blood pressure variability; perioperative parameters; respiratory function.

Figures

Figure 1
Figure 1
Depression of respiratory function after CABG surgery: (A) maximal inspiratory pressure (MIP); (B) maximal expiratory pressure (MEP); (C) peak expiratory flow (PEF). Day-1, day before surgery; Day 3–7, days after surgery ICU (days 1–3 were at ICU). Statistical significance is in comparison to the day before surgery: *p < 0.05; **p < 0.01; #p < 0.001.

References

    1. Albu G., Babik B., Késmárky K., Balázs M., Hantos Z., Peták F. (2010). Changes in airway and respiratory tissue mechanics after cardiac surgery. Ann. Thorac. Surg. 89, 1218–1226. 10.1016/j.athoracsur.2009.12.062
    1. Aronson S., Dyke C. M., Levy J. H., Cheung A. T., Lumb P. D., Newman M. F., et al. . (2011). Does perioperative systolic blood pressure variability predict mortality after cardiac surgery? An exploratory analysis of the ECLIPSE trials. Anesth. Analg. 113, 19–30. 10.1213/ANE.0b013e31820f9231
    1. Aronson S., Stafford-Smith M., Phillips-Bute B., Shaw A., Gaca J., Newman M., et al. . (2010). Intraoperative systolic blood pressure variability predicts 30-day mortality in aortocoronary bypass surgery patients. Anesthesiology 113, 305–312. 10.1097/ALN.0b013e3181e07ee9
    1. Babik B., Asztalos T., Peták F., Deák Z. I., Hantos Z. (2003). Changes in respiratory mechanics during cardiac surgery. Anesth. Analg. 96, 1280–1287. 10.1213/01.ANE.0000055363.23715.40
    1. Berrizbeitia L. D., Tessler S., Jacobowitz I. J., Kaplan P., Budzilowicz L., Cunningham J. N. (1989). Effect of sternotomy and coronary bypass surgery on postoperative pulmonary mechanics. Comparison of internal mammary and saphenous vein bypass grafts. Chest 96, 873–876.
    1. Boggia J., Asayama K., Li Y., Hansen T. W., Mena L., Schutte R. (2014). Cardiovascular risk stratification and blood pressure variability on ambulatory and home blood pressure measurement. Curr. Hypertens. Rep. 16, 470. 10.1007/s11906-014-0470-8
    1. Campos L. A., Pereira V. L., Jr., Muralikrishna A., Albarwani S., Brás S., Gouveia S. (2013). Mathematical biomarkers for the autonomic regulation of cardiovascular system. Front. Physiol. 4:279. 10.3389/fphys.2013.00279
    1. Charkoudian N., Wallin B. G. (2014). Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Compr. Physiol. 4, 825–850. 10.1002/cphy.c130038
    1. De Maria R., Mazzoni M., Parolini M., Gregori D., Bortone F., Arena V., et al. . (2005). Predictive value of EuroSCORE on long term outcome in cardiac surgery patients: a single institution study. Heart 91, 779–784. 10.1136/hrt.2004.037135
    1. Dick T. E., Hsieh Y. H., Dhingra R. R., Baekey D. M., Galán R. F., Morris K. F., et al. . (2014). Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. Prog. Brain Res. 209, 191–205. 10.1016/B978-0-444-63274-6.00010-2
    1. Dolan E., O'Brien E. (2010). Blood pressure variability: clarity for clinical practice. Hypertension 56, 179–181. 10.1161/HYPERTENSIONAHA.110.154708
    1. Garcia A. J., III, Koschnitzky J. E., Dashevskiy T., Ramirez J. M. (2013). Cardiorespiratory coupling in health and disease. Auton. Neurosci. 175, 26–37. 10.1016/j.autneu.2013.02.006
    1. Gonzalez A. A., Dimick J. B., Birkmeyer J. D., Ghaferi A. A. (2014). Understanding the volume-outcome effect in cardiovascular surgery: the role of failure to rescue. JAMA Surg. 149, 119–123. 10.1001/jamasurg.2013.3649
    1. Hachenberg T., Tenling A., Rothen H. U., Nyström S. O., Tyden H., Hedenstierna G. (1993). Thoracic intravascular and extravascular fluid volumes in cardiac surgical patients. Anesthesiology 79, 976–984. 10.1097/00000542-199311000-00016
    1. Hillis L. D., Smith P. K., Anderson J. L., Bittl J. A., Bridges C. R., Byrne J. G., et al. . (2011). 2011 ACCF/AHA guideline for coronary artery bypass graft surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 58, e123–e210. 10.1016/j.jacc.2011.08.009
    1. Hirschhorn A. D., Richards D. A., Mungovan S. F., Morris N. R., Adams L. (2012). Does the mode of exercise influence recovery of functional capacity in the early postoperative period after coronary artery bypass graft surgery? A randomized controlled trial. Interact. Cardiovasc. Thorac. Surg. 15, 995–1003. 10.1093/icvts/ivs403
    1. Katayama K., Iwamoto E., Ishida K., Koike T., Saito M. (2012). Inspiratory muscle fatigue increases sympathetic vasomotor outflow and blood pressure during submaximal exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1167–R1175. 10.1152/ajpregu.00006.2012
    1. Ksela J., Avbelj V., Kalisnik J. M. (2015). Multifractality in heartbeat dynamics in patients undergoing beating-heart myocardial revascularization. Comput. Biol. Med. 60, 66–73. 10.1016/j.compbiomed.2015.02.012
    1. Ledowski T., Reimer M., Chavez V., Kapoor V., Wenk M. (2012). Effects of acute postoperative pain on catecholamine plasma levels, hemodynamic parameters, and cardiac autonomic control. Pain 153, 759–764. 10.1016/j.pain.2011.11.002
    1. Mok Q., Ross-Russell R., Mulvey D., Green M., Shinebourne E. A. (1991). Phrenic nerve injury in infants and children undergoing cardiac surgery. Br. Heart J. 65, 287–292. 10.1136/hrt.65.5.287
    1. Murray A., Drummond G. B., Dodds S., Marshall L. (2009). Low-frequency changes in finger volume in patients after surgery, related to respiration and venous pressure. Eur. J. Anaesthesiol. 26, 9–16. 10.1097/EJA.0b013e328318c6bd
    1. Nashef S. A., Roques F., Michel P., Gauducheau E., Lemeshow S., Salamon R. (1999). European system for cardiac operative risk evaluation (EuroSCORE). Eur. J. Cardiothorac. Surg. 16, 9–13. 10.1016/S1010-7940(99)00134-7
    1. Neves F. H., Carmona M. J., Auler J. O., Jr., Rodrigues R. R., Rouby J. J., Malbouisson L. M. (2013). Cardiac compression of lung lower lobes after coronary artery bypass graft with cardiopulmonary bypass. PLoS ONE 8:e78643. 10.1371/journal.pone.0078643
    1. Pantoni C. B., Mendes R. G., Di Thommazo-Luporini L., Simões R. P., Amaral-Neto O., Arena R., et al. . (2014). Recovery of linear and nonlinear heart rate dynamics after coronary artery bypass grafting surgery. Clin. Physiol. Funct. Imaging 34, 449–456. 10.1111/cpf.12115
    1. Paparella D., Yau T. M., Young E. (2002). Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg. 21, 232–244. 10.1016/s1010-7940(01)01099-5
    1. Patron E., Messerotti Benvenuti S., Favretto G., Gasparotto R., Palomba D. (2014). Depression and reduced heart rate variability after cardiac surgery: the mediating role of emotion regulation. Auton. Neurosci. 180, 53–58. 10.1016/j.autneu.2013.11.004
    1. Politano A. D., Riccio L. M., Lake D. E., Rusin C. G., Guin L. E., Josef C. S., et al. . (2013). Predicting the need for urgent intubation in a surgical/trauma intensive care unit. Surgery 154, 1110–1116. 10.1016/j.surg.2013.05.025
    1. Pompei L., Della Rocca G. (2013). The postoperative airway: unique challenges? Curr. Opin. Crit. Care 19, 359–363. 10.1097/MCC.0b013e3283632ede
    1. Roosens C., Heerman J., De Somer F., Caes F., van Belleghem Y., Poelaert J. I. (2002). Effects of off-pump coronary surgery on the mechanics of the respiratory system, lung, and chest wall: comparison with extracorporeal circulation. Crit. Care Med. 30, 2430–2437. 10.1097/00003246-200211000-00005
    1. Savci S., Degirmenci B., Saglam M., Arikan H., Inal-Ince D., Turan H., et al. . (2011). Short-term effects of inspiratory muscle training in coronary artery bypass graft surgery: a randomized controlled trial. Scand. Cardiovasc. J. 45, 286–293. 10.3109/14017431.2011.595820
    1. Slieker M. G., van der Ent C. K. (2003). The diagnostic and screening capacities of peak expiratory flow measurements in the assessment of airway obstruction and bronchodilator response in children with asthma. Monaldi Arch. Chest Dis. 59, 155–159.
    1. Souza Neto E. P., Loufouat J., Saroul C., Paultre C., Chiari P., Lehot J. J., et al. . (2004). Blood pressure and heart rate variability changes during cardiac surgery with cardiopulmonary bypass. Fundam. Clin. Pharmacol. 18, 387–396. 10.1111/j.1472-8206.2004.00244.x
    1. Stein R., Maia C. P., Silveira A. D., Chiappa G. R., Myers J., Ribeiro J. P. (2009). Inspiratory muscle strength as a determinant of functional capacity early after coronary artery bypass graft surgery. Arch. Phys. Med. Rehabil. 90, 1685–1691. 10.1016/j.apmr.2009.05.010
    1. Task Force M., Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., et al. . (2013). 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 34, 2949–3003. 10.1093/eurheartj/eht296
    1. Westerdahl E., Lindmark B., Eriksson T., Friberg O., Hedenstierna G., Tenling A. (2005). Deep-breathing exercises reduce atelectasis and improve pulmonary function after coronary artery bypass surgery. Chest 128, 3482–3488. 10.1378/chest.128.5.3482

Source: PubMed

3
订阅