Effect of AMY1 copy number variation and various doses of starch intake on glucose homeostasis: data from a cross-sectional observational study and a crossover meal study

Mary Farrell, Stina Ramne, Phébée Gouinguenet, Louise Brunkwall, Ulrika Ericson, Anne Raben, Peter M Nilsson, Marju Orho-Melander, Yvonne Granfeldt, Juscelino Tovar, Emily Sonestedt, Mary Farrell, Stina Ramne, Phébée Gouinguenet, Louise Brunkwall, Ulrika Ericson, Anne Raben, Peter M Nilsson, Marju Orho-Melander, Yvonne Granfeldt, Juscelino Tovar, Emily Sonestedt

Abstract

Background: Copy number (CN) variation (CNV) of the salivary amylase gene (AMY1) influences the ability to digest starch and may influence glucose homeostasis, obesity and gut microbiota composition. Hence, the aim was to examine the association of AMY1 CNV with fasting glucose, BMI, and gut microbiota composition considering habitual starch intake and to investigate the effect of AMY1 CNV on the postprandial response after two different starch doses.

Methods: The Malmö Offspring Study (n = 1764, 18-71 years) was used to assess interaction effects between AMY1 CNV (genotyped by digital droplet polymerase chain reaction) and starch intake (assessed by 4-day food records) on fasting glucose, BMI, and 64 gut bacteria (16S rRNA sequencing). Participants with low (≤ 4 copies, n = 9) and high (≥ 10 copies, n = 10) AMY1 CN were recruited for a crossover meal study to compare postprandial glycemic and insulinemic responses to 40 g and 80 g starch from white wheat bread.

Results: In the observational study, no overall associations were found between AMY1 CNV and fasting glucose, BMI, or gut microbiota composition. However, interaction effects between AMY1 CNV and habitual starch intake on fasting glucose (P = 0.03) and BMI (P = 0.05) were observed, suggesting inverse associations between AMY1 CNV and fasting glucose and BMI at high starch intake levels and positive association at low starch intake levels. No associations with the gut microbiota were observed. In the meal study, increased postprandial glucose (P = 0.02) and insulin (P = 0.05) were observed in those with high AMY1 CN after consuming 40 g starch. This difference was smaller and nonsignificant after consuming 80 g starch.

Conclusions: Starch intake modified the observed association between AMY1 CNV and fasting glucose and BMI. Furthermore, depending on the starch dose, a higher postprandial glucose and insulin response was observed in individuals with high AMY1 CN than in those with low AMY1 CN.

Trial registration: ClinicalTrials.gov , NCT03974126 . Registered 4 June 2019-retrospectively registered.

Keywords: AMY1; Body mass index; Copy number variation; Diet-gene interaction; Gut microbiome; Metabolic health; Nutrigenetics; Salivary α-amylase; Starch intake.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Change in postprandial response (mean ± SE) among the low AMY1 CN group (n = 9, black) and high AMY1 CN group (n = 10, gray) over time (min) after a starch meal. A Capillary blood glucose response to 40 g starch, B capillary blood glucose response to 80 g starch, C plasma insulin response to 40 g starch, and D plasma insulin response to 80 g starch. Three-way ANOVA demonstrated a significant AMY1 CN group × time interaction (P = 0.04) and AMY1 CN group × starch dose × time interaction (P = 0.02) for glucose. For insulin, only the AMY1 CN group × time interaction was borderline significant (P = 0.06). Two-way ANOVA separated by starch dose demonstrated significant AMY1 CN group × time interactions for both glucose and insulin at 40 g (P = 0.0011 and P = 0.0007) but not at 80 g (P = 0.49 and P = 0.59), respectively. Boxplots of the total iAUC for each group and starch dose are displayed in E for glucose and F for insulin. *Whisker reaches iAUC 91,211. AMY1, salivary α-amylase gene; CN, copy number; iAUC incremental area under the curve

References

    1. Peyrot des Gachons C, Breslin PA. Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep. 2016;16(10):102. doi: 10.1007/s11892-016-0794-7.
    1. Usher CL, McCarroll SA. Complex and multi-allelic copy number variation in human disease. Brief Funct Genomics. 2015;14(5):329–338. doi: 10.1093/bfgp/elv028.
    1. Santos JL, Saus E, Smalley SV, Cataldo LR, Alberti G, Parada J, Gratacos M, Estivill X. Copy number polymorphism of the salivary amylase gene: implications in human nutrition research. J Nutrigenet Nutrigenomics. 2012;5(3):117–131. doi: 10.1159/000339951.
    1. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007;39(10):1256–1260. doi: 10.1038/ng2123.
    1. Falchi M, El-Sayed Moustafa JS, Takousis P, Pesce F, Bonnefond A, Andersson-Assarsson JC, Sudmant PH, Dorajoo R, Al-Shafai MN, Bottolo L, et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet. 2014;46(5):492–497. doi: 10.1038/ng.2939.
    1. Mejia-Benitez MA, Bonnefond A, Yengo L, Huyvaert M, Dechaume A, Peralta-Romero J, Klunder-Klunder M, Garcia Mena J, El-Sayed Moustafa JS, Falchi M, et al. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia. 2015;58(2):290–294. doi: 10.1007/s00125-014-3441-3.
    1. Viljakainen H, Andersson-Assarsson JC, Armenio M, Pekkinen M, Pettersson M, Valta H, Lipsanen-Nyman M, Makitie O, Lindstrand A. Low copy number of the AMY1 locus is associated with early-onset female obesity in Finland. PloS one. 2015;10(7):e0131883. doi: 10.1371/journal.pone.0131883.
    1. Marcovecchio ML, Florio R, Verginelli F, De Lellis L, Capelli C, Verzilli D, Chiarelli F, Mohn A, Cama A. Low AMY1 gene copy number is associated with increased body mass index in prepubertal boys. PloS one. 2016;11(5):e0154961. doi: 10.1371/journal.pone.0154961.
    1. Bonnefond A, Yengo L, Dechaume A, Canouil M, Castelain M, Roger E, Allegaert F, Caiazzo R, Raverdy V, Pigeyre M, Arredouani A, Borys JM, Lévy-Marchal C, Weill J, Roussel R, Balkau B, Marre M, Pattou F, Brousseau T, Froguel P. Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach. BMC Med. 2017;15(1):37. doi: 10.1186/s12916-017-0784-x.
    1. Pinho S, Padez C, Manco L. High AMY1 copy number protects against obesity in Portuguese young adults. Ann Hum Biol. 2018;45(5):435–439. doi: 10.1080/03014460.2018.1490452.
    1. Leon-Mimila P, Villamil-Ramirez H, Lopez-Contreras BE, Moran-Ramos S, Macias-Kauffer LR, Acuna-Alonzo V, et al. Low salivary amylase gene (AMY1) copy number is associated with obesity and gut Prevotella abundance in Mexican children and adults. Nutrients. 2018;10(11). 10.3390/nu10111607.
    1. Marquina C, Mousa A, Belski R, Banaharis H, Naderpoor N, de Courten B. Increased inflammation and cardiometabolic risk in individuals with low AMY1 copy numbers. J Clin Med. 2019;8(3). 10.3390/jcm8030382.
    1. Venkatapoorna CMK, Ayine P, Parra EP, Koenigs T, Phillips M, Babu JR, et al. Association of salivary amylase (AMY1) gene copy number with obesity in alabama elementary school children. Nutrients. 2019;11(6). 10.3390/nu11061379.
    1. Selvaraju V, Venkatapoorna CMK, Babu JR, Geetha T. Salivary amylase gene copy number is associated with the obesity and inflammatory markers in children. Diabetes Metab Syndr Obes. 2020;13:1695–1701. doi: 10.2147/DMSO.S251359.
    1. Usher CL, Handsaker RE, Esko T, Tuke MA, Weedon MN, Hastie AR, Cao H, Moon JE, Kashin S, Fuchsberger C, Metspalu A, Pato CN, Pato MT, McCarthy MI, Boehnke M, Altshuler DM, Frayling TM, Hirschhorn JN, McCarroll SA. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat Genet. 2015;47(8):921–925. doi: 10.1038/ng.3340.
    1. Choi YJ, Nam YS, Yun JM, Park JH, Cho BL, Son HY, Kim JI, Yun JW. Association between salivary amylase (AMY1) gene copy numbers and insulin resistance in asymptomatic Korean men. Diabetic medicine : a journal of the British Diabetic Association. 2015;32(12):1588–1595. doi: 10.1111/dme.12808.
    1. Yong RY, Mustaffa SB, Wasan PS, Sheng L, Marshall CR, Scherer SW, Teo YY, Yap EP. Complex copy number variation of AMY1 does not associate with obesity in two East Asian cohorts. Hum Mutat. 2016;37(7):669–678. doi: 10.1002/humu.22996.
    1. Atkinson FS, Hancock D, Petocz P, Brand-Miller JC. The physiologic and phenotypic significance of variation in human amylase gene copy number. The American journal of clinical nutrition. 2018;108(4):737–748. doi: 10.1093/ajcn/nqy164.
    1. Shwan NAA, Armour JAL. No evidence for association of BMI with salivary amylase gene copy number in the UK 1958 birth cohort. Obesity. 2019;27(9):1533–1538. doi: 10.1002/oby.22565.
    1. Vazquez-Moreno M, Mejia-Benitez A, Sharma T, Peralta-Romero J, Locia-Morales D, Klunder-Klunder M, National Obesity Network M, Cruz M, Meyre D. Association of AMY1A/AMY2A copy numbers and AMY1/AMY2 serum enzymatic activity with obesity in Mexican children. Pediatric obesity. 2020;15(8):e12641. doi: 10.1111/ijpo.12641.
    1. Barber TM, Bhatti AA, Elder PJD, Ball SP, Calvez R, Ramsden DB, et al. AMY1 gene copy number correlates with glucose absorption and visceral fat volume, but not with insulin resistance. The Journal of clinical endocrinology and metabolism. 2020;105(10):–e3596. 10.1210/clinem/dgaa473.
    1. Al-Akl N, Thompson RI, Arredouani A. High plasma salivary alpha-amylase, but not high AMY1 copy number, associated with low obesity rate in Qatari adults: cross-sectional study. Sci Rep. 2020;10(1):17918. doi: 10.1038/s41598-020-74864-6.
    1. Hamid AK, Andersson-Assarsson J, Ericson U, Sonestedt E. Interaction effect between copy number variation in salivary amylase locus (AMY1) and starch intake on glucose homeostasis in the Malmö diet and cancer cohort. Frontiers in Nutrition. 2021;7. 10.3389/fnut.2020.598850.
    1. Poole AC, Goodrich JK, Youngblut ND, Luque GG, Ruaud A, Sutter JL, Waters JL, Shi Q, El-Hadidi M, Johnson LM, et al. Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe. 2019;25(4):553–564. doi: 10.1016/j.chom.2019.03.001.
    1. Rukh G, Ericson U, Andersson-Assarsson J, Orho-Melander M, Sonestedt E. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI. The American journal of clinical nutrition. 2017;106(1):256–262. doi: 10.3945/ajcn.116.149831.
    1. Higuchi R, Iwane T, Iida A, Nakajima K. Copy number variation of the salivary amylase gene and glucose metabolism in healthy young Japanese women. J Clin Med Res. 2020;12(3):184–189. doi: 10.14740/jocmr4082.
    1. Mandel AL, Breslin PA. High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. The Journal of nutrition. 2012;142(5):853–858. doi: 10.3945/jn.111.156984.
    1. Barling PM, Shyam S, Selvathevan MD, Misra S. Anomalous association of salivary amylase secretion with the postprandial glycaemic response to starch. BMC Nutrition. 2016;2(1). 10.1186/s40795-016-0088-0.
    1. Nybacka S, Berteus Forslund H, Wirfalt E, Larsson I, Ericson U, Warensjo Lemming E, Bergstrom G, Hedblad B, Winkvist A, Lindroos AK. Comparison of a web-based food record tool and a food-frequency questionnaire and objective validation using the doubly labelled water technique in a Swedish middle-aged population. J Nutr Sci. 2016;5:e39. doi: 10.1017/jns.2016.29.
    1. Brunkwall L, Jonsson D, Ericson U, Hellstrand S, Kennback C, Ostling G, Jujic A, Melander O, Engstrom G, Nilsson J, et al. The Malmo Offspring Study (MOS): design, methods and first results. European journal of epidemiology. 2020;36(1):103–116. doi: 10.1007/s10654-020-00695-4.
    1. Elisabeth Amcoff AE, Barbieri HE, Lindroos AK, Nälsén C, Lemming MPEW. Riksmaten - vuxna 2010-11: Livsmedels- och näringsintag bland vuxna i Sverige - metodrapport. Uppsala; 2014.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Holm J, Björck I, Drews A, Asp N-G. a rapid method for the analysis of starch. Starch - Stärke. 1986;38(7):224–226. doi: 10.1002/star.19860380704.
    1. Heianza Y, Zhou T, Yuhang C, Huang T, Willett WC, Hu FB, Bray GA, Sacks FM, Qi L. Starch digestion-related amylase genetic variants, diet, and changes in adiposity: analyses in prospective cohort studies and a randomized dietary intervention. Diabetes. 2020;69(9):1917–1926. doi: 10.2337/db19-1257.
    1. Bano G. Glucose homeostasis, obesity and diabetes. Best Pract Res Clin Obstet Gynaecol. 2013;27(5):715–726. doi: 10.1016/j.bpobgyn.2013.02.007.
    1. Blaak EE, Antoine JM, Benton D, Bjorck I, Bozzetto L, Brouns F, Diamant M, Dye L, Hulshof T, Holst JJ, et al. Impact of postprandial glycaemia on health and prevention of disease. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2012;13(10):923–984. doi: 10.1111/j.1467-789X.2012.01011.x.
    1. Herrmann E, Young W, Rosendale D, Conrad R, Riedel CU, Egert M. Determination of resistant starch assimilating bacteria in fecal samples of mice by in vitro RNA-based stable isotope probing. Front Microbiol. 2017;8:1331. doi: 10.3389/fmicb.2017.01331.
    1. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6(8):1535–1543. doi: 10.1038/ismej.2012.4.
    1. Zhang L, Ouyang Y, Li H, Shen L, Ni Y, Fang Q, Wu G, Qian L, Xiao Y, Zhang J, Yin P, Panagiotou G, Xu G, Ye J, Jia W. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: a randomized crossover trial. Sci Rep. 2019;9(1):4736. doi: 10.1038/s41598-018-38216-9.
    1. Carpenter D, Mitchell LM, Armour JA. Copy number variation of human AMY1 is a minor contributor to variation in salivary amylase expression and activity. Hum Genomics. 2017;11(1):2. doi: 10.1186/s40246-017-0097-3.
    1. Ooi DS, Tan VM, Ong SG, Chan YH, Heng CK, Lee YS. Differences in AMY1 gene copy numbers derived from blood, buccal cells and saliva using quantitative and droplet digital PCR methods: flagging the pitfall. PloS one. 2017;12(1):e0170767. doi: 10.1371/journal.pone.0170767.

Source: PubMed

3
订阅