Study Protocol for Better Evidence for Selecting Transplant Fluids (BEST-Fluids): a pragmatic, registry-based, multi-center, double-blind, randomized controlled trial evaluating the effect of intravenous fluid therapy with Plasma-Lyte 148 versus 0.9% saline on delayed graft function in deceased donor kidney transplantation

Michael G Collins, Magid A Fahim, Elaine M Pascoe, Kathryn B Dansie, Carmel M Hawley, Philip A Clayton, Kirsten Howard, David W Johnson, Colin J McArthur, Rachael C McConnochie, Peter F Mount, Donna Reidlinger, Laura Robison, Julie Varghese, Liza A Vergara, Laurence Weinberg, Steven J Chadban, BEST-Fluids Investigators and the Australasian Kidney Trials Network, Michael G Collins, Magid A Fahim, Elaine M Pascoe, Kathryn B Dansie, Carmel M Hawley, Philip A Clayton, Kirsten Howard, David W Johnson, Colin J McArthur, Rachael C McConnochie, Peter F Mount, Donna Reidlinger, Laura Robison, Julie Varghese, Liza A Vergara, Laurence Weinberg, Steven J Chadban, BEST-Fluids Investigators and the Australasian Kidney Trials Network

Abstract

Background: Delayed graft function, the requirement for dialysis due to poor kidney function post-transplant, is a frequent complication of deceased donor kidney transplantation and is associated with inferior outcomes and higher costs. Intravenous fluids given during and after transplantation may affect the risk of poor kidney function after transplant. The most commonly used fluid, isotonic sodium chloride (0.9% saline), contains a high chloride concentration, which may be associated with acute kidney injury, and could increase the risk of delayed graft function. Whether using a balanced, low-chloride fluid instead of 0.9% saline is safe and improves kidney function after deceased donor kidney transplantation is unknown.

Methods: BEST-Fluids is an investigator-initiated, pragmatic, registry-based, multi-center, double-blind, randomized controlled trial. The primary objective is to compare the effect of intravenous Plasma-Lyte 148 (Plasmalyte), a balanced, low-chloride solution, with the effect of 0.9% saline on the incidence of delayed graft function in deceased donor kidney transplant recipients. From January 2018 onwards, 800 participants admitted for deceased donor kidney transplantation will be recruited over 3 years in Australia and New Zealand. Participants are randomized 1:1 to either intravenous Plasmalyte or 0.9% saline peri-operatively and until 48 h post-transplant, or until fluid is no longer required; whichever comes first. Follow up is for 1 year. The primary outcome is the incidence of delayed graft function, defined as dialysis in the first 7 days post-transplant. Secondary outcomes include early kidney transplant function (composite of dialysis duration and rate of improvement in graft function when dialysis is not required), hyperkalemia, mortality, graft survival, graft function, quality of life, healthcare resource use, and cost-effectiveness. Participants are enrolled, randomized, and followed up using the Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry.

Discussion: If using Plasmalyte instead of 0.9% saline is effective at reducing delayed graft function and improves other clinical outcomes in deceased donor kidney transplantation, this simple, inexpensive change to using a balanced low-chloride intravenous fluid at the time of transplantation could be easily implemented in the vast majority of transplant settings worldwide.

Trial registration: Australian New Zealand Clinical Trials Registry: ACTRN12617000358347. Registered on 8 March 2017. ClinicalTrials.gov: NCT03829488. Registered on 4 February 2019.

Keywords: Balanced crystalloid; Delayed graft function; End-stage kidney disease; Intravenous fluids; Kidney transplantation; Normal saline; Peri-operative care; Plasma-Lyte 148; Pragmatic trial; Registry trial.

Conflict of interest statement

MC has received research support from Baxter Healthcare Pty Ltd., the manufacturer of Plasmalyte, through a Baxter Investigator Initiated Research grant that provided fluids for this trial (commercial value of US $36,270). DJ has received consultancy fees, research grants, speaker’s honoraria, and travel sponsorships from Baxter Healthcare and Fresenius Medical Care, consultancy fees from Astra Zeneca and AWAK, speaker’s honoraria and travel sponsorships from ONO, and travel sponsorships from Amgen. DR, LR, LV, EP, and JV are employees of the Sponsor, The University of Queensland. KD’s salary is funded by a BEAT-CKD grant and she is an employee of the ANZDATA Registry. PC is the Deputy Executive Officer at the ANZDATA Registry. CH has received fees for research committee activities from Janssen and GlaxoSmithKline paid to her institution, personal fees from Otsuka, research grants from Fresenius, Shire and PKD Australia outside the submitted work, and research grants from Baxter and NHMRC related to the current project. LW works at the Department of Anaesthesia at Austin Health, which has received funding from Baxter Healthcare for investigator-initiated clinical research. LW has received honoraria from Baxter Healthcare for consulting activities. All LW’s fluid-related research, including study design, execution, data collection, analysis, and reporting have been conducted independently of Baxter Healthcare and other commercial entities. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Outline of the BEST-Fluids trial. ESKD, end-stage kidney disease; CKD, chronic kidney disease
Fig. 2
Fig. 2
Pragmatic aspects of trial design. The Pragmatic-Explanatory Continuum Indicator Summary 2 (PRECIS-2) wheel for the BEST-Fluids trial. Scores in each domain range from 1 (very explanatory) to 5 (very pragmatic) as described in Loudon et al. [26]. This PRECIS-2 wheel was generated using the tool available at www.precis-2.org
Fig. 3
Fig. 3
Participant timeline. Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) checklist. Enrolment, interventions and assessments. EQ-5D-5L, EuroQol five dimensions, 5 levels questionnaire; EQ-5D-Y, EuroQol five dimensions, Youth questionnaire
Fig. 4
Fig. 4
Masking of study fluid. The printed label design on the study fluid bag does not allow identification of the type of study fluid (right hand image). Two adhesive stickers with the unique study code (treatment pack number) are attached to the exterior protective over-pouch (not shown), one of which is applied to the bag itself, along with a patient label, when the bag is opened by clinical staff (left hand image)

References

    1. Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D, Klarenbach S, Gill J. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11(10):2093–2109.
    1. Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med. 2012;9(9):e1001307.
    1. Hall IE, Reese PP, Doshi MD, Weng FL, Schroppel B, Asch WS, Ficek J, Thiessen-Philbrook H, Parikh CR. Delayed graft function phenotypes and 12-month kidney transplant outcomes. Transplantation. 2017;101(8):1913–1923.
    1. Mallon DH, Summers DM, Bradley JA, Pettigrew GJ. Defining delayed graft function after renal transplantation: simplest is best. Transplantation. 2013;96(10):885–889.
    1. Hagenmeyer EG, Haussler B, Hempel E, Grannas G, Kalo Z, Kilburg A, Nashan B. Resource use and treatment costs after kidney transplantation: impact of demographic factors, comorbidities, and complications. Transplantation. 2004;77(10):1545–1550.
    1. Yarlagadda SG, Coca SG, Formica RN, Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–1047.
    1. Wu WK, Famure O, Li Y, Kim SJ. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int. 2015;88(4):851–858.
    1. Butala NM, Reese PP, Doshi MD, Parikh CR. Is delayed graft function causally associated with long-term outcomes after kidney transplantation? Instrumental variable analysis. Transplantation. 2013;95(8):1008–1014.
    1. Irish WD, Ilsley JN, Schnitzler MA, Feng S, Brennan DC. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant. 2010;10(10):2279–2286.
    1. Schroppel B, Legendre C. Delayed kidney graft function: from mechanism to translation. Kidney Int. 2014;86(2):251–258.
    1. Niemann CU, Feiner J, Swain S, Bunting S, Friedman M, Crutchfield M, Broglio K, Hirose R, Roberts JP, Malinoski D. Therapeutic hypothermia in deceased organ donors and kidney-graft function. N Engl J Med. 2015;373(5):405–414.
    1. Schnuelle P, Gottmann U, Hoeger S, Boesebeck D, Lauchart W, Weiss C, Fischereder M, Jauch KW, Heemann U, Zeier M, et al. Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial. JAMA. 2009;302(10):1067–1075.
    1. Tingle SJ, Figueiredo RS, Moir JA, Goodfellow M, Talbot D, Wilson CH. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 2019;3:Cd011671.
    1. O'Malley CM, Frumento RJ, Bennett-Guerrero E. Intravenous fluid therapy in renal transplant recipients: results of a US survey. Transplant Proc. 2002;34(8):3142–3145.
    1. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24.
    1. Lobo DN, Awad S. Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent ‘pre-renal’ acute kidney injury? Kidney Int. 2014;86(6):1096–1105.
    1. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–735.
    1. Kraut JA, Madias NE. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol. 2010;6(5):274–285.
    1. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102(1):24–36.
    1. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, Slovis CM, Lindsell CJ, Ehrenfeld JM, Siew ED, et al. Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. 2018;378(9):819–828.
    1. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, Stollings JL, Kumar AB, Hughes CG, Hernandez A, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–839.
    1. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–829.
    1. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–1572.
    1. Wan S, Roberts MA, Mount P. Normal saline versus lower-chloride solutions for kidney transplantation. Cochrane Database Syst Rev. 2016;8(8):CD010741.
    1. Weinberg L, Collins N, Van Mourik K, Tan C, Bellomo R. Plasma-Lyte 148: a clinical review. World J Crit Care Med. 2016;5(4):235–250.
    1. Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ. 2015;350:h2147.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612.
    1. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–637.
    1. Weinberg L, Harris L, Bellomo R, Ierino FL, Story D, Eastwood G, Collins M, Churilov L, Mount PF. Effects of intraoperative and early postoperative normal saline or Plasma-Lyte 148 ® on hyperkalaemia in deceased donor renal transplantation: a double-blind randomized trial. Br J Anaesth. 2017;119(4):606–615.
    1. McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117(2):412–421.
    1. Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, Setoguchi S, Beadles C, Lindenauer PK. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–1591.
    1. Shaw AD, Schermer CR, Lobo DN, Munson SH, Khangulov V, Hayashida DK, Kellum JA. Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome. Crit Care. 2015;19:334.
    1. Weinberg L, Li M, Churilov L, Armellini A, Gibney M, Hewitt T, Tan CO, Robbins R, Tremewen D, Christophi C, et al. Associations of fluid amount, type, and balance and acute kidney injury in patients undergoing major surgery. Anaesth Intensive Care. 2018;46(1):79–87.
    1. Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, Wang L, Byrne DW, Shaw AD, Bernard GR, et al. Balanced crystalloids versus saline in the intensive care unit. The SALT randomized trial. Am J Respir Crit Care Med. 2017;195(10):1362–1372.
    1. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, McGuinness S, Mehrtens J, Myburgh J, Psirides A, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–1710.
    1. Maheshwari K, Turan A, Makarova N, Ma C, Esa WAS, Ruetzler K, Barsoum S, Kuhel AG, Ritchey MR, Higuera-Rueda C, et al. Saline versus lactated Ringer's solution: the saline or lactated Ringer's (SOLAR) trial. Anesthesiology. 2020;132(4):614–624.
    1. McIlroy D, Murphy D, Kasza J, Bhatia D, Wutzlhofer L, Marasco S. Effects of restricting perioperative use of intravenous chloride on kidney injury in patients undergoing cardiac surgery: the LICRA pragmatic controlled clinical trial. Intensive Care Med. 2017;43(6):795–806.
    1. Rodrigo E, Ruiz JC, Pinera C, Fernandez-Fresnedo G, Escallada R, Palomar R, Cotorruelo JG, Zubimendi JA, Martin de Francisco AL, Arias M. Creatinine reduction ratio on post-transplant day two as criterion in defining delayed graft function. Am J Transplant. 2004;4(7):1163–1169.
    1. Adwaney A, Randall DW, Blunden MJ, Prowle JR, Kirwan CJ. Perioperative Plasma-Lyte use reduces the incidence of renal replacement therapy and hyperkalaemia following renal transplantation when compared with 0.9% saline: a retrospective cohort study. Clin Kidney J. 2017;10(6):838–844.
    1. Treasure T, MacRae KD. Minimisation: the platinum standard for trials?. Randomisation doesn’t guarantee similarity of groups; minimisation does. BMJ. 1998;317(7155):362–363.
    1. Orandi BJ, James NT, Hall EC, Van Arendonk KJ, Garonzik-Wang JM, Gupta N, Montgomery RA, Desai NM, Segev DL. Center-level variation in the development of delayed graft function after deceased donor kidney transplantation. Transplantation. 2015;99(5):997–1002.
    1. Clayton PA, Dansie K, Sypek MP, White S, Chadban S, Kanellis J, Hughes P, Gulyani A, McDonald S. External validation of the US and UK kidney donor risk indices for deceased donor kidney transplant survival in the Australian and New Zealand population. Nephrol Dial Transplant. 2019;34(12):2127–2131.
    1. Rao PS, Schaubel DE, Guidinger MK, Andreoni KA, Wolfe RA, Merion RM, Port FK, Sung RS. A comprehensive risk quantification score for deceased donor kidneys: the kidney donor risk index. Transplantation. 2009;88(2):231–236.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381.
    1. Lagerqvist B, Frobert O, Olivecrona GK, Gudnason T, Maeng M, Alstrom P, Andersson J, Calais F, Carlsson J, Collste O, et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med. 2014;371(12):1111–1120.
    1. Plasma-Lyte 148 (approx. pH 7.4) IV infusion [Product information sheet]. Old Toongabbie: Baxter Healthcare Pty Ltd, 2014 [revised 2019 May 30; cited 2020 April 2]. Available from: .
    1. Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, Christophi C, Leslie K, McGuinness S, Parke R, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378(24):2263–2274.

Source: PubMed

3
订阅