Brain activation patterns in medicated versus medication-naïve adults with attention-deficit hyperactivity disorder during fMRI tasks of motor inhibition and cognitive switching

Jatta Berberat, Ruth Huggenberger, Margherita Montali, Philipp Gruber, Achmed Pircher, Karl-Olof Lövblad, Hanspeter E Killer, Luca Remonda, Jatta Berberat, Ruth Huggenberger, Margherita Montali, Philipp Gruber, Achmed Pircher, Karl-Olof Lövblad, Hanspeter E Killer, Luca Remonda

Abstract

Background: Adult-attention-deficit-hyperactive-disorder (ADHD) is often unrecognized condition. FMRI examination along with neuropsychological testing might strengthen the diagnosis. We hypothesized that ADHD-adults with and without medication would show different fMRI pattern compared to healthy controls while testing tasks of motor inhibition and cognitive switching.

Methods: 45 subjects in three age-matched groups: (1) controls, (2) ADHD-adults under medication (ADHD+) and (3) medication-naïve adults with ADHD (ADHD-) underwent fMRI and neuropsychological testing. Group analysis and population-based statistics were performed.

Results: DTVP-A, intellectual ability as well as attention capability, visual-perceptual and visual-motor abilities showed no significant differences between the groups. However, fMRI revealed statistically significant differences between the ADHD+, ADHD- and control groups on tasks of motor inhibition and cognitive switching on adults in bilateral fronto-striatal brain regions, inferior fronto-frontal, fronto-cingulate and fronto-parietal networks as well as in the parietal lobe (p < 0.05).

Conclusions: fMRI offers the potential to differentiate between the ADHD+, ADHD- and control groups. FMRI possibly opens a new window for monitoring the therapeutic effect of ADHD medication.

Trial registration: NCT02578342, registered at August 2015 to clinical trial registry ( https://ichgcp.net/clinical-trials-registry/NCT02578342 ).

Keywords: ADHD; Adults; Diagnosis; Functional MRI; Neuroimaging.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
fMRI scan showing statistically significant activation (p < 0.05) over the whole brain by pooled data of controls, ADHD+ and ADHD− groups on Go/No-Go task
Fig. 2
Fig. 2
fMRI scan showing statistically significant activation (p < 0.05) over the whole brain by pooled data of controls, ADHD+ and ADHD− groups on Stop task
Fig. 3
Fig. 3
fMRI scan showing statistically significant activation (p < 0.05) over the whole brain by pooled data of controls, ADHD+ and ADHD− groups on Switch task
Fig. 4
Fig. 4
Group comparison based on RFX analysis on Go/No-Go task, Stop task and Switch task

References

    1. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA. Triangulating a cognitive control netweork using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci. 2007;27(14):3743–3752. doi: 10.1523/JNEUROSCI.0519-07.2007.
    1. Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A. Anterior cingulate and response conflict: effects of frequency, inhibition and errors. Cereb Cortex. 2001;11(9):825–836. doi: 10.1093/cercor/11.9.825.
    1. Chikazoe J. Lokalizing performance of go/no-go tasks to prefrontal cortical subregions. Curr Opin Psychiatry. 2010;23(3):267–272. doi: 10.1097/YCO.0b013e3283387a9f.
    1. Cortese S, Kelly C, Chabernaud C, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169(10):1038–1055. doi: 10.1176/appi.ajp.2012.11101521.
    1. Cubillo A, Halari R, Ecker C, Giampietro V, Taylor E, Rubia K. Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood Attention-Deficit Hyperactivity Disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching. J Psychiatric Res. 2010;44(10):629–639. doi: 10.1016/j.jpsychires.2009.11.016.
    1. del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiat. 2011;69:e145–157. doi: 10.1016/j.biopsych.2011.02.036.
    1. DeZubicaray GI, Andrew C, Zelaya FO, Williams FCR, Dumanoir C. Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia. 2000;38:1280–1291. doi: 10.1016/S0028-3932(00)00033-6.
    1. De Jong R, Coles MG, Logan GD. Strategies and mechanisms in nonselective and selective inhibitory motor control. J Exp Psychol Hum Percept Perform. 1995;21(3):498–511. doi: 10.1037/0096-1523.21.3.498.
    1. Derrfuss J, Brass M, Neumann J, von Cramon DY. Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp. 2005;25(1):22–34. doi: 10.1002/hbm.20127.
    1. DiGirolamo GJ, Kramer AF, Barad V, Cepeda NJ, Weissman DH, Milham MP, et al. General and task-specific frontal lobe requirement in older adults during executive processes: a fMRI investigation of task-switching. NeuroReport. 2001;12(9):2065–2071. doi: 10.1097/00001756-200107030-00054.
    1. Durston S, Thomas KM, Worden MS, Yang Y, Casey BJ. The effect of predicting context on inhibition: an event related fMRI study. Neuroimage. 2002;16(2):449–453. doi: 10.1006/nimg.2002.1074.
    1. Eagle DM, Bari A, Robbins TW. The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology. 2008;199(3):439–456. doi: 10.1007/s00213-008-1127-6.
    1. Faraone SV, Wilens TE, Petty C, Antshel K, Spencer T, Biederman J. Substance use among ADHD adults: implications of late onset and subthreshold diagnoses. Am J Addict. 2007;16(Suppl 1):24–32. doi: 10.1080/10550490601082767.
    1. Garavan H, Ross TJ, Stein EA. Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci USA. 1999;96:8301–8306. doi: 10.1073/pnas.96.14.8301.
    1. Glover S, Miall RC, Rushworth MF. Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci. 2005;17(1):124–136. doi: 10.1162/0898929052880066.
    1. Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013;70(2):185–198. doi: 10.1001/jamapsychiatry.2013.277.
    1. Jamkhande PG, Khawaja A. Role of norepinephrine reuptake inhibitors in attention deficit hyperactivity disorder: a mechanism-based short review. Int J Nutr Pharmacol Neurol Dis. 2016;6:146–151. doi: 10.4103/2231-0738.191660.
    1. Konrad K, Neufang S, Fink GR, Herpertz-Dahlmann B. Long-term effects of methylphenidate on neural networks associated with executive attention in children with ADHD: results from a longitudinal functional MRI study. J Am Acad Child Adolesc Psychiatry. 2007;46(12):1633–1641. doi: 10.1097/chi.0b013e318157cb3b.
    1. Krämer UM, Knight RT, Münte TF. Electrophysiological evidence for different inhibitory mechanisms when stopping or changing a planned response. J Cogn Neurosci. 2011;23(9):2481–2493. doi: 10.1162/jocn.2010.21573.
    1. Krämer UM, Solbakk AK, Funderud I, Løvstad M, Endestad T, Knight RT The role of lateral prefrontal cortex in inhibitory motor control. Cortex. 2013;49(3):837–849. doi: 10.1016/j.cortex.2012.05.003.
    1. Lei D, Du M, Wu M, et al. Functional MRI reveals different response inhibition between adults and children with ADHD. Neuropsychology. 2015;29(6):874–881. doi: 10.1037/neu0000200.
    1. Liddle PF, Kiehl KA, Smith AM. Event-related fMRI study to response inhibition. Hum Brain Mapp. 2001;12(2):100–109. doi: 10.1002/1097-0193(200102)12:2<100::AID-HBM1007>;2-6.
    1. Logan GD, Cowan WB, Davis KA. On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform. 1984;10(2):276–291. doi: 10.1037/0096-1523.10.2.276.
    1. McCarthy H, Skokauskas N, Frodl T. Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychol Med. 2014;44(4):869–880. doi: 10.1017/S0033291713001037.
    1. Menon V, Adleman NE, White CD, Glover GH, Reiss AL. Error-related brain activation during Go/NoGo response inhibition task. Hum Brain Mapp. 2001;12(3):131–143. doi: 10.1002/1097-0193(200103)12:3<131::AID-HBM1010>;2-C.
    1. Philipsen A. Differential diagnosis and comorbidity of attention-deficit/hyperactivity disporder (ADHD) and borderline personality disorder (BPD) in adults. Eur Arch Psychiatry Clin Neurosci. 2006;256(Suppl 1):i42–i46. doi: 10.1007/s00406-006-1006-2.
    1. Rubia K, Halari R, Smith AB, et al. Dissociated functional brain abnormalities of inhibition in boys with pure conduct disorder and in boys with pure attention deficit hyperactivity disorder. Am J Psychiatry. 2008;165(7):889–897. doi: 10.1176/appi.ajp.2008.07071084.
    1. Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, Simmons A, Williamson SCR, Giampietro V, Andrew CM, Taylor E. Mapping motor inhibition: conjunctive brain activations across different versions of Go/No-Go and stop tasks. Neuroimage. 2001;13(2):250–261. doi: 10.1006/nimg.2000.0685.
    1. Rubia K, Smith AB, Brammer MJ, Taylor E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage. 2003;20(1):351–358. doi: 10.1016/S1053-8119(03)00275-1.
    1. Rubia K, Smith AB, Taylor E, Brammer M. Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate duringerror-related processes. Hum Brain Mapp. 2007;28(11):1163–1177. doi: 10.1002/hbm.20347.
    1. Rubia K, Smith A, Wolley J, Nosarti C, Heyman I, Taylor E, Brammer M. Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum Brain Mapp. 2006;27(12):973–993. doi: 10.1002/hbm.20237.
    1. Sáenz A, Villemonteix T, Massat I. Structural and functional neuroimaging in attention-deficit/hyperactivity disorder. Dev Med Child Neurol. 2019;61(4):399–405. doi: 10.1111/dmcn.14050.
    1. Schachar R, Logan GD, Robaey P, Chen S, Ickowicz A, Barr C. Restraint and cancellation: multiple inhibition deficits in attention deficit hyperactive disorder. J Abnorm Child Psychol. 2007;35(2):229–238. doi: 10.1007/s10802-006-9075-2.
    1. Shaw P, Rabin C. New insights into attention-deficit/hyperactivity disorder using structural neuroimaging. Curr Psychiatry Rep. 2009;11(5):393–398. doi: 10.1007/s11920-009-0059-0.
    1. Smith AB, Taylor E, Brammer M, Rubia K. Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Hum Brain Mapp. 2004;21(4):247–256. doi: 10.1002/hbm.20007.
    1. Spencer T, Biederman J, Mick E. Attention-deficit/hyperactivity disorder: diagnosis, lifespan, comorbidies, and neurobiology. Ambul Pediatr. 2007;7(1):73–81. doi: 10.1016/j.ambp.2006.07.006.
    1. Smith AB, Taylor E, Brammer M, Toone B, Rubia K. Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am J Psychiatry. 2006;163(6):1044–1051. doi: 10.1176/ajp.2006.163.6.1044.
    1. Ulke C, Rullmann M, Huang J, et al. Adult attention-deficit/hyperactivity disorder is associated with reduced norepinephrine transporter availability in right attention networks: a (S, S)-O-[11C]methylreboxetine positron emission tomography study. Transl Psychiatry. 2019;9:301. doi: 10.1038/s41398-019-0619-y.
    1. Wager TD, Sylvester CYC, Lacey SC, Nee DE, Franklin M, Jonides J. Common and unique components of response inhibition revealed by fMRI. Neuroimage. 2005;27(2):323–340. doi: 10.1016/j.neuroimage.2005.01.054.
    1. Williams BR, Pnesse JS, Scharchar RJ, Logan GD, Tannock R. Development of inhibitory control across the life span. Dev Psychol. 1999;35(1):205–213. doi: 10.1037/0012-1649.35.1.205.

Source: PubMed

3
订阅