Detecting a Reward Signal in the Motor Cortex

This study will use transcranial magnetic stimulation (TMS) to determine whether the activity in the brain when someone wins something affects the part of the brain that controls movement. Studies have shown that the brain releases signals to mark rewards for certain behavior, like the activity the brain generates when an animal receives food or drink after performing a certain action. This study will look for a way to detect this kind of signal in humans.

Healthy volunteers between 18 and 60 years of age are eligible for this study. Participants undergo TMS during two experiments slot machine stimulation and key sequence (see below). For TMS, a wire coil is held on the subject s scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. The stimulation may cause twitching in muscles of the face, arm or leg, and there may be a pulling sensation on the skin under the coil. The effect of TMS on the muscles is detected with small metal disk electrodes taped onto the skin of the arms or legs.

The stimulation strength needed to activate the hand muscles is determined at the beginning of each experiment. To do this, the subject sits with his or her arms and hand relaxed. Magnetic pulses of varying strengths are applied in order to find the right strength. Also, a series of 45 pairs of magnetic pulses is administered so close to each other that they produce only one movement. Measurements of the movements generated serve as a baseline for comparison with movements generated during the experiments.

Slot Machine Simulation

Subjects play a computer game similar to a slot machine. They press a button to start the game and watch as three barrels of the machine spin into place. Subjects can win $0.25, $1or $5 if all three barrels match when they stop spinning. If all three barrels do not match, subjects do not win any money, except in rare instances, when they are awarded money even when all three barrels do not match. In one trial in this experiment, subjects receive transcranial magnetic stimulation after they see the second barrel stop spinning. In another trial, they receive the stimulation after the third barrel stops spinning.

Key Sequence

Subjects see a letter on a computer screen and press a combination of the three keyboard keys G, H, and J. If they press the keys in the right order and under the time limit, they win $1. At some point, the letter displayed changes, and the subjects must guess a new combination to earn money. Each of the letters corresponds to its own combination of key presses. A few moments after the subjects see whether they pressed the keys in the right order, they receive TMS.

Study Overview

Status

Completed

Conditions

Detailed Description

Objectvie:

The role of mesencephalic dopamine neurons in reward processing has been established in primates using electrophysiological techniques and in humans using functional neuroimaging. Their role is thought to be dual: i) they show sustained activity with the expectation of a future reward and ii) a phasic response after reward. Animal data indicate that these neurons, located in the midbrain areas A8-10, behave as a single functional unit when activated. They have rich projections to both the prefrontal and motor cortices where they synapse on interneurons and cortical pyramidal cells, producing primarily inhibition. Though their function is not fully understood, these projections clearly play an important role in motivation and learning. Since there are no electrophysiological techniques available to detect dopaminergic or inhibitory activity in the human prefrontal cortex, our objective is to develop a paradigm to detect a reward related signal in the primary motor cortex, where transcranial magnetic stimulation can be used to measure brief events.

Study Population:

The population that we will study will be healthy volunteers between the ages of 18-60, without any significant medical history, contraindication to TMS or history of addictive behavior.

Design:

Our hypothesis is that the dopamine reward-related signal will alter level of evocable inhibition in primary motor cortex. Using behavioral paradigms that deliver intermittent reward, we aim to demonstrate a difference in the amount of cortical inhibition, i) when reward is expected compared to when reward is not expected ii) after rewarded compared to unrewarded trials iii) when reward follows a variable effortful response, and iv) when there is uncertainty as to whether a reward will be administered. If we are unable to produce a signal in the motor cortex with these simple paradigms, we will look for a reward-related change in inhibition when the rewarded behavior is the associative learning of a motor sequence. We will control for effects of variations in attention related to the experimental task, but not specific for reward, with a similar behavioral paradigm that manipulates attention and expectation.

Outcome Measures:

The outcome measures will be changes in the conditioned/unconditioned MEP for each reward condition.

Study Type

Observational

Enrollment (Actual)

168

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Maryland
      • Bethesda, Maryland, United States, 20892
        • National Institutes of Health Clinical Center, 9000 Rockville Pike

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 60 years (Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

  • INCLUSION CRITERIA:

Men and women, age 18-60.

EXCLUSION CRITERIA:

Significant neurological or psychiatric history.

History of habitual gambling, defined as either visiting casinos more than once per month or playing cards for money more than once per week or gambling over the internet more than once per month.

Habitual consumption of more than two drinks a day, marijuana more than once a week or any other illicit drug use within the last three months.

Use of medication affecting the DA system, such as phenothiazine antihistamines (promethazine), antiemetics or decongestants within the last month.

Seizure History.

Significant abnormality on neurological examination.

Metal in the cranial cavity or eye, pacemaker, implanted pumps or stimulators.

Subjects who have participated in experiments 1-5 in this protocol may not participate in experiment 6, or 7.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

January 8, 2007

Primary Completion

December 7, 2022

Study Completion

March 6, 2014

Study Registration Dates

First Submitted

January 12, 2007

First Submitted That Met QC Criteria

January 12, 2007

First Posted (Estimate)

January 15, 2007

Study Record Updates

Last Update Posted (Actual)

December 17, 2019

Last Update Submitted That Met QC Criteria

December 14, 2019

Last Verified

March 6, 2014

More Information

Terms related to this study

Other Study ID Numbers

  • 070063
  • 07-N-0063

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Healthy

3
Subscribe