Treatment Response in Schizophrenia: Bridging Imaging and Postmortem Studies

July 23, 2021 updated by: Dr. Adrianne C Lahti, University of Alabama at Birmingham
The overarching goal is to identify imaging markers that will predict treatment response, and to confirm or validate these biomarkers using anatomical studies of postmortem tissue. Early detection of drug response would yield specific treatment strategies that are tailored to the individual, thus improving both the quality of life of the patients and drastically reducing the costs associated with unsuccessful treatment strategies.

Study Overview

Status

Completed

Conditions

Detailed Description

Our past brain imaging and Positron Emission Tomography (PET) studies have contributed to the understanding of specific brain regions related to treatment response to antipsychotic drugs in schizophrenia. We have found that treatment response to antipsychotic medication is related to blood-flow patterns in specific regions (such as the ventral striatum, anterior cingulate cortex, and hippocampus). In addition, functional changes in these regions following one week of antipsychotic drug therapy are predictive of treatment response. Dr. Roberts, a neuroanatomist, has studied the post mortem (after death) brains of patients with schizophrenia while working in association with the Maryland Brain Collection. Her studies have indicated an increased number of dopaminergic synapses (that is, neurons that produce the neurotransmitter dopamine) in these regions in patients who were known to have had a favorable response to antipsychotic drug therapy. In addition, from this post-mortem work we know the number of glutamate synapses in these regions were significantly different between good treatment responders and poor responders.

From these studies we have hypothesized that in schizophrenia an over-abundance of dopamine in the ventral striatum interferes with normal functioning by limiting the transmission of glutamate. Putatively, antipsychotic medications may decrease the symptoms of schizophrenia by restoring glutamatergic activity in the ventral striatum and projected areas, such as the anterior cingulate cortex and hippocampus. We have hypothesized that those individuals responding favorably to antipsychotic drug therapy will display greater glutamate activity in the ventral striatum (due to dopamine blockade) and the other regions receiving glutamate projections. This should lead to restored neuronal functioning in good responders when compared to treatment resistant and poor responders to antipsychotic drug treatment. We will test this hypothesis using complementary imaging and postmortem studies yielding data that will permit the formulation of a comprehensive model for antipsychotic drug responses in subjects with severe mental illness.

Magnetic Resonance is a technique for probing atoms and molecules based upon their interaction with an external magnetic field. Magnetic Resonance does not use ionizing radiation. The most familiar example of this is Magnetic Resonance Imaging (MRI). Another application of Magnetic Resonance is called functional Magnetic Resonance Imaging (fMRI). Functional Magnetic Resonance Imaging (fMRI) allows us to measure the Blood Oxygenation Level-Dependent (BOLD) response, a measure of blood flow in the brain that is known to correlate with neuronal activity. Another application of Magnetic Resonance is Magnetic Resonance Spectroscopy (MRS), which allows the measurements of specific metabolites such as N-acetyl aspartate (NAA), a measure of neuronal integrity, and Glutamate, which is involved in neurotransmission and metabolism. We will seek to replicate and extend our past Positron Emission Tomography (PET) findings with functional magnetic resonance imaging (fMRI) using cognitive tasks that are known to activate the hippocampus (Episodic memory task) and the anterior cingulate cortex (Stroop task). This aim will further seek to parse out the differential contribution of the hippocampus and the anterior cingulate cortex to treatment response. At the same time, N-acetylaspartate, a marker of neuronal integrity, and glutamate measurements obtained with magnetic resonance spectroscopy in the anterior cingulate cortex and hippocampus will directly probe in the living brain the relation between neuronal integrity, glutamate function, and treatment response. In parallel, the postmortem work of Dr. Roberts (UAB IRB exemption: NO70813001, IRB#F080306003) will concentrate on the study of the anterior cingulate cortex in post mortem brains of schizophrenic patients. These studies should allow the development of hypotheses about the pathophysiology of treatment response and provide a basis for the interpretation of functional imaging data. The overarching goal is to identify imaging markers that will predict treatment response, and to confirm or validate these biomarkers using anatomical studies of postmortem tissue. Early detection of drug response would yield specific treatment strategies that are tailored to the individual, thus improving both the quality of life of the patients and drastically reducing the costs associated with unsuccessful treatment strategies.

Study Type

Observational

Enrollment (Actual)

75

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Alabama
      • Birmingham, Alabama, United States, 35294
        • University of Alabama at Birmingham, Department of Psychiatry, SC 501

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

19 years to 55 years (Adult)

Accepts Healthy Volunteers

Yes

Genders Eligible for Study

All

Sampling Method

Non-Probability Sample

Study Population

We will recruit fifty patients with a diagnosis of schizophrenia presenting at UAB clinics who have stopped taking APD medication for at least 10 days and agree to antipsychotic treatment, and twenty-five matched healthy volunteers.

Description

Inclusion Criteria:

  • Normal volunteers or schizophrenic patients between the age of 19 and 55.

Exclusion Criteria:

  • Individuals with a diagnosable central nervous system illness.
  • Major medical condition, active substance abuse or dependence, pregnancy, or history of head trauma.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

Cohorts and Interventions

Group / Cohort
Diagnosis of Schizophrenia
Patients with a diagnosis of schizophrenia that have been off antipsychotic medicine and would like to resume treatment will be enrolled in the study.
Healthy Volunteers
Healthy Volunteers without a psychiatric diagnosis, central nervous system condition, serious head injury, or current drug use will be matched on an individual basis to schizophrenic participants and used as a control population.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Time Frame
To evaluate whether MRI signals (both fMRI and 1H-MRS) predictive of treatment response to antipsychotic therapy in schizophrenia.
Time Frame: at conclusion of study
at conclusion of study

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Adrienne C Lahti, MD, University of Alabama at Birmingham, Department of Psychiatry

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

October 1, 2008

Primary Completion (Actual)

December 31, 2020

Study Completion (Actual)

June 30, 2021

Study Registration Dates

First Submitted

July 9, 2009

First Submitted That Met QC Criteria

July 10, 2009

First Posted (Estimate)

July 13, 2009

Study Record Updates

Last Update Posted (Actual)

July 26, 2021

Last Update Submitted That Met QC Criteria

July 23, 2021

Last Verified

July 1, 2021

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Schizophrenia

3
Subscribe