Effects of Oral Antioxidant Cocktail in Cardiovascular Disease Patients

August 12, 2023 updated by: University of Nebraska

Effects of Oral Antioxidant Cocktail on Vascular Function and Blood Flow in Cardiovascular Disease Patients

Title: Effects of oral antioxidant cocktail on vascular function and muscle function in cardiovascular disease patients

Cardiovascular disease (CVD) generally refers to various conditions involving narrowed or blocked dysfunctional blood vessels that often lead to heart attack or stroke. One of the main contributors to blood vessel dysfunction is damage to the vascular endothelium. This often results from the accumulation of oxidative stress (OS) and inflammation due to a decrease in blood flow and oxygen transport to the body's organs and skeletal muscle.

The body's natural antioxidant defense system cannot keep up with the high level of OS clearance necessary to maintain proper vascular homeostasis. Previous research has addressed the use of single antioxidants (e.g. vitamin E, beta-carotene, ascorbic acid) in CVD patients, but the use of a combination of antioxidants has yet to be examined. Therefore, the purpose of this study is to examine the effects of acute oral antioxidant cocktail administration (containing vitamin C, E, and alpha-lipoic acid) on oxidative stress, vascular function, autonomic function (heart rate variability), leg blood flow, leg muscle tissue oxygenation, and walking capacity in CVD patients.

This is a parallel study design that will assess the effects of oral antioxidant cocktail administration on CVD patients ages 50-85. Subjects will be required to visit the lab 1 time. This visit will consist of 1) obtaining informed consent and questions, 2) baseline blood sampling and baseline measurements of endothelial function, arterial stiffness, autonomic function (heart rate variability), leg blood flow, leg muscle oxygenation, and a walking test, 3) first dose oral antioxidant cocktail administration followed by a 2-hour break, 4) second dose oral antioxidant cocktail 30 minutes after the first dose, 5) post-consumption blood sampling and measurements of endothelial function, arterial stiffness, autonomic function (heart rate variability), leg blood flow, leg muscle oxygenation, and a walking test.

Study Overview

Detailed Description

Cardiovascular disease (CVD) is one of the leading causes of death in the United States. CVD is attributed to a combination of major risk factors including hypertension, dyslipidemia, obesity, poor diet, low physical activity levels, and vascular endothelial cell dysfunction.

The vascular endothelial cells (VECs) have significant control over vascular homeostatic regulation. In the case of mechanical and chemical stimuli, VECs can release vasoactive substances to regulate vascular tone, cell adhesion, and vascular smooth muscle cell (VSMC) proliferation. When the endothelium is damaged and becomes dysfunctional, atherosclerotic changes take place that can contribute to the development of CVD and atherosclerosis.

Endothelial dysfunction has been partially attributed to high levels of reactive oxygen species (ROS) causing significant oxidative stress (OS). OS is defined as an imbalance between the rate of ROS production and the rate of ROS clearance by the antioxidant defense system, with insufficient clearance leading to oxidative damage of the vasculature. High levels of OS have been shown to negatively affect the vascular endothelium by increasing VSMC proliferation and inflammation, which may result in vascular remodeling. Increased OS also attenuates the bioavailability of nitric oxide, a potent vasodilator, and can further exacerbate the structural and functional changes of the vascular endothelium that are associated with the development of CVD.

When the vascular endothelium becomes dysfunctional (partially due to OS), blood flow and vascular tone regulation become impaired, which then negatively affects O2 transport. Without proper blood flow and O2 transport, exercise capacity becomes attenuated. This is a major concern for CVD patients, because exercise is an effective non-pharmacological therapeutic treatment for many of the CVD risk factors including obesity, dyslipidemia, hypertension, and metabolic syndrome. Therefore, improvement of the antioxidant defense system could alleviate high OS, and improve vasodilatory capacity of blood vessels, blood flow and O2 transport, and by extension, can increase exercise capacity. This would make exercise a more viable treatment option for CVD patients.

The antioxidant defense system contains numerous enzymatic and non-enzymatic antioxidants, including catalase, superoxide dismutase, glutathione peroxidase, vitamins A, E, and C, along with glutathione, ubiquinone, and flavanoids. The antioxidant defense system has been found to be attenuated in CVD patients, particularly in those with peripheral arterial disease. However, as ROS production increases, this antioxidant defense system can be overwhelmed, leading to OS and damage to the tissues. Antioxidant capacity may be improved through supplementation in order to provide better OS clearance in the body, which could then result in better blood flow and O2 delivery to the muscles and other organs in the body.

Previous research has shown that blood flow increases after antioxidant intake. Leg blood flow increased significantly in chronic obstructive pulmonary disease (COPD) patients during knee extension exercise in watts (W) in comparison to healthy age-matched controls (3W: 1,798±128 vs. 1,604±100 mL/min, 6W: 1,992±120 vs. 1,832±109 mL/min, 9W: 2,187±136 vs. 2,035±114 mL/min, P < 0.05, antioxidant supplement vs. control, respectively) following acute antioxidant supplementation (~2 hours prior). In patients with open-angle glaucoma, antioxidant supplementation for one month significantly increased biomarkers of ocular blood flow within the retina and retrobulbar vascular beds, where peak systolic velocity increased by 7.3% (P=0.013) and end diastolic velocity increased by 11% (P=0.014). Cerebral blood flow has also been shown to increase following 12 weeks of antioxidant supplementation. Overall, the use of antioxidant intake, acute and chronic, has shown to improve blood flow to various areas within the vasculature.

Previous research also indicates that the increase in blood flow is indicative of greater O2 supply to the measured area. During knee extension exercise in COPD patients, leg O2 consumption increased significantly in comparison to age-matched controls following acute antioxidant intake (3W: 210±15 vs. 173 ± 12 mL O2/min, 6W: 237±15 vs. 217±14 mL O2/min, 9W: 260±18 mL vs. 244±16 mL O2/min, P< 0.05, antioxidant supplement vs. control, respectively). Following 12 weeks of antioxidant use, oxygen utilization in the right prefrontal cortex increased and was strongly associated with the increase in cerebral blood flow (SO2, from 68.21±1.65% to 66.58±1.58%, P=0.001, pre vs. post, respectively).

Pharmacological interventions are often aimed toward controlling cholesterol and blood pressure; however, OS reduction and vascular endothelial function are not common therapeutic targets. Previous research has addressed the use of antioxidants in CVD patients, but it has focused on the intake of a single antioxidant (e.g. vitamin E, beta-carotene, ascorbic acid) and not a combination of antioxidants. The utilization of a combination of antioxidants and their effects on blood flow and oxygen transport in CVD are as of yet unclear. The purpose of this proposed study is to examine the effects of acute administration of an oral antioxidant cocktail (containing vitamin C, E, and a-lipoic acid E) on oxidative stress, vascular endothelial function, autonomic function, blood flow, and oxygen delivery during a walking test. It is hypothesized that oral antioxidant cocktail administration will reduce oxidative stress markers, and will increase both vascular endothelial function and blood flow, thus increasing oxygen delivery to the muscles and improving walking capacity. This pending data from acute antioxidant administration will give insight to long-term antioxidant use in CVD patients and its effects on oxidative stress, blood flow, and the integration of O2 transport and utilization in the body.

Study Type

Interventional

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Nebraska
      • Omaha, Nebraska, United States, 68182
        • The University of Nebraska at Omaha

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

50 years to 85 years (Adult, Older Adult)

Accepts Healthy Volunteers

Yes

Description

Cardiovascular Disease Inclusion Criteria:

  1. be able to give written, informed consent
  2. be diagnosed with CVD
  3. be between 50-85 years old
  4. be postmenopausal, meaning having had cessation of menses for at least 12 consecutive months

Healthy Control Inclusion Criteria:

  1. be able to give written, informed consent
  2. no CVD conditions
  3. be between 50-85 years old
  4. be postmenopausal, meaning having had cessation of menses for at least 12 consecutive months

Exclusion Criteria (Both Groups):

  1. chronic kidney/renal disease
  2. chronic heart failure
  3. neuromuscular disease
  4. known cancer
  5. already supplementing with antioxidants or vitamins within 5 days of the study
  6. pregnant or nursing women

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Non-Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Sham Comparator: Baseline

Subjects will be tested on one day. Baseline testing will take place and will be followed by oral antioxidant cocktail intake. Oral antioxidant cocktail testing will take place ~2 hours after antioxidant intake.

During baseline testing, no supplement or placebo intake will be used.

No oral antioxidant cocktail intake or placebo intake will occur prior to baseline measurements
Experimental: Oral antioxidant cocktail

Subjects will be tested on one day. Baseline testing will take place and will be followed by oral antioxidant cocktail intake. Oral antioxidant cocktail testing will take place ~2 hours after antioxidant intake.

Dose 1:(immediately after baseline) 300 mg alpha-lipoic acid, 500 mg vitamin C, 200 IU vitamin E Dose 2: (30 minutes after dose 1) 300 mg alpha-lipoic acid, 500 mg vitamin C, 400 IU vitamin E

Oral antioxidant cocktail intake will occur after baseline measurements:

Dose 1 (immediately after baseline testing): 300 mg alpha-lipoic acid, 500 mg vitamin C, 200 IU vitamin E Dose 2 (30 minutes after Dose 1): 300 mg alpha-lipoic acid, 500 mg vitamin C, 400 IU vitamin E

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Endothelial function
Time Frame: 20 minutes
Flow-mediated dilation will be used to measure endothelial function in the brachial artery. This will be done pre- and post-antioxidant intake.
20 minutes

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Arterial stiffness
Time Frame: 10 minutes
Brachial-to-ankle pulse-wave velocity and carotid-to-femoral pulse-wave velocity will be used to measure arterial stiffness. This will be done pre- and post-antioxidant intake.
10 minutes
Blood flow
Time Frame: 10 minutes
Doppler ultrasound will be used to measure blood flow in the femoral and popliteal arteries. This will be done pre- and post-antioxidant intake.
10 minutes
Oxidative stress
Time Frame: 5 minutes
10 mL of blood will be drawn from an antecubital vein pre- and post-antioxidant intake.
5 minutes
Autonomic function
Time Frame: 40 minutes
Heart rate variability will be measured to determine autonomic function. This will be done pre- and post-antioxidant intake.
40 minutes
Muscle tissue oxygenation
Time Frame: 28 minutes (during physical walking capacity test)
Muscle tissue oxygenation will be assessed using near-infrared spectroscopy (NIRS) during a maximal walking protocol pre- and post-antioxidant intake.
28 minutes (during physical walking capacity test)
Physical walking capacity
Time Frame: 28 minutes
Physical walking capacity will be measured using the Gardner treadmill protocol pre- and post-antioxidant intake.
28 minutes

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Song-Young Park, PhD, University of Nebraska

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

December 1, 2020

Primary Completion (Actual)

September 13, 2022

Study Completion (Actual)

September 13, 2022

Study Registration Dates

First Submitted

August 3, 2018

First Submitted That Met QC Criteria

August 8, 2018

First Posted (Actual)

August 14, 2018

Study Record Updates

Last Update Posted (Actual)

August 15, 2023

Last Update Submitted That Met QC Criteria

August 12, 2023

Last Verified

August 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Cardiovascular Diseases

Clinical Trials on Baseline

3
Subscribe