Morphological Analysis of Meibomian Glands

April 21, 2023 updated by: Jin Yuan, Zhongshan Ophthalmic Center, Sun Yat-sen University

Automated Morphological Analysis of Meibomian Glands

An automated quantitative meibomian gland analyzer based on all kinds of infrared meibomian gland images was develop to obtain more detail in meibomian gland, including width, length, area, signal intensity correlated to the quality of meibum, deformation index and ratio of area of each visible specific gland. The purpose of this study is present as separate sections the following points: (1) to compared the detailed characteristics of meibomian glands in normal subjects, Meibomian gland dysfunction (MGD) patients by the automated quantitative analyzer; (2) to identify the inter-examiner and intra-examiner repeatability of the new technique; (3) to explore the correlation among morphological and functional parameters of meibomian gland and risk factors,clinical symptoms and signs; (4) to explore the sensitivity and specificity of meibomian gland morphological and functional parameters in MGD diagnosis. (5) using morphological and functional parameters as new assessment of MGD severity and efficacy indicators for treatment.

Study Overview

Detailed Description

Meibomian glands are essential for maintaining ocular surface health and integrity secrete various lipid components to forms a lipid layer to prevent excessive tear evaporation. Functional disorders of the meibomian glands, referred to today as meibomian gland dysfunction (MGD), are increasingly recognized as a high incidence disease commonly characterized by terminal duct obstruction and/or abnormal glandular secretion, often results in ocular surface epithelium damage, chronic blepharitis and dry eye disease that significantly reduces quality of life. A wide variation of the prevalence of MGD were reported from 0.39% to 69.3%, which is likely due to lack of diagnostic methods. To identify which clinical features are likely to be predictive of progressive disease in MGD may indicate the early diagnosis and proper treatment strategies.

Histologic section through the normal meibomian glands and the obstructed human meibomian gland revealed that obstruction of orifice in MGD could lead to dilation of the central duct, damage of the secretory meibocytes and finally result in atrophy of dilated meibomian glands and glands drop-out. It was thus be accepted that detailed changes of meibomian glands morphology are key signs to diagnose and evaluate the severity of MGD. The detailed changes including dilation, distortion, shortening and loss of visualisation of glands which can be directly observed and visual assessment by the developed of non-contact meibomian gland infrared imaging technology. Quantitative evaluations of meibomian glands were obtain by developing imaging processing techniques. The most common use is the image editing software Image J (National Institute of Health; http://imagej.nih.gov/ij) which can identify the gland region on the image manually by the users and may lead to inter-observer variability. Koh et al., first applied original algorithms to automatically analysed gland loss in meibography images with a manually pre-processing. Reiko et al., then develop an objective and automatic system to measure the meibomian gland area. However, the existing methods of meibomian gland analysis have been limited to clinical use where large number of images needs to be analyzed efficiently due to the inter-observer variability or time-consuming process.

Meanwhile, the existing quantitative morphological parameters obtain by those imaging processing techniques, including percentage of MG drop-out and gland atrophy area, were suggested to not only be advanced stages or terminal changes in MGD, but also occurs as an age-related atrophic process. The early findings of MGD induced by the primary pathologic obstruction including degenerative gland dilation, irregularly shapes of gland and change of meibum quality are still difficult to be evaluated automatically and quantitively from the image. Moreover, the meibomian gland drop-out is still an approximate assessment without specific pattern. Whether the atrophy or loss occur in upper or lower eyelids, central, distal or proximal, total loss of gland or partial loss of gland has the greatest effect on the pathology progress of MGD will be important to identify. Thus, a comprehensive analysis technique to automatically detect multi-information of meibomian gland morphology will benefit the future early diagnosis and management of MGD.

Recently, an automated quantitative meibomian gland analyzer based on all kinds of infrared meibomian gland images was develop to obtain more detail in meibomian gland, including width, length, area, signal intensity correlated to the quality of meibum, deformation index and ratio of area of each visible specific gland. The purpose of this study is present as separate sections the following points: (1) to compared the detailed characteristics of meibomian glands in normal subjects and MGD patients by the automated quantitative analyzer; (2) to identify the inter-examiner and intra-examiner repeatability of the new technique; (3) to explore the correlation among morphological and functional parameters of meibomian gland and risk factors,clinical symptoms and signs; (4) to explore the sensitivity and specificity of meibomian gland morphological and functional parameters in MGD diagnosis. (5) using morphological and functional parameters as new assessment of MGD severity and efficacy indicators for treatment.

Study Type

Interventional

Enrollment (Anticipated)

180

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

      • Guangzhou, China, 510060
        • Recruiting
        • Deng Yuqing
        • Contact:
    • Guangdong
      • Guangzhou, Guangdong, China, 510080
        • Recruiting
        • Zhongshan Ophthalmic Center, Sun Yat-sen University
        • Principal Investigator:
          • Jin Yuan, M.D., Ph.D.
        • Contact:

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 70 years (Adult, Older Adult)

Accepts Healthy Volunteers

Yes

Description

General Inclusion Criteria:

  • Age from 18 to 70 years.
  • Patients and healthy volunteers who are willing and capable to participate in this clinical study with signed Informed Consent Form.

Inclusion Criteria of patients:

  • Clinical diagnosis of MGD: The diagnosis of MGD was based on an altered quality of expressed secretions and/or decreased or absent expression.
  • Patients without ≥2/3 Meibomian glands atrophy.
  • Fitzpatrick skin type 1-4.

Inclusion Criteria of healthy volunteers:

  • Negative history or condition of ocular or systemic illness based on evaluation by a research physician.

General Exclusion Criteria:

  • Patients and healthy volunteers with ocular allergies, trauma, contact lens wear, continuous medications usage such as tretinoin, isotretinoin, antidepressant medications, photosensitive drugs, glucocorticoids and immunomodulators, or have used them within one month.
  • Patients and healthy volunteers who have a history of ocular surface surgery.
  • Patients and healthy volunteers who have active ocular surface infection or have suffered from ocular surface infection within one month.
  • Patients and healthy volunteers who have endophthalmitis or a medical history of endophthalmitis.
  • Patients and healthy volunteers who have a medical history of viral keratitis infection.
  • Women who are pregnant, planning to become pregnant during the course of the study or breast-feeding (women of child-bearing age will be asked by the physician).
  • Meibography images were blurred or with obvious tarsus folds, incomplete exposure and large hyperreflective area.
  • Patients and healthy volunteers who are not suitable for the trial as determined by investigators.

Exclusion Criteria of patients:

  • Patients have abnormalities of ocular surface function or eyelid function, or presence of precancerous lesions, cancer or pigmentation in the eyelid area.
  • Patients who have plans to receive ocular surgeries (e.g., cataract, myopic refractive surgery) within 6 months.
  • Patients who have been treated with lacrimal punctum embolization within one month.
  • Patients with disease that could lead to ADDE, such as Sjogren syndrome and a lacrimal gland abnormality.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
No Intervention: Normal health subject group
Normal health subject without intervention.
Experimental: MGD-thermal pulsation group
A 12 minutes LIPIFLOW treatment was performed.
Participants underwent a single LipiFlow® thermal pulsation system (TearScience Inc., Morrisville, NC,USA) treatment on the first visit: after lid hygiene with wet cotton swabs(OCuSOFT, Inc., Texas, USA) and instillation of anesthetic eye drops (Alcaine, proparacaine hydrochloride 0.4 ml/2mg) in both eyes, sterile eye cups were placed on to the conjunctival sac as instructed by the manufacturer, after 12 minutes of upper and lower palpebral conjunctival surfaces heat while simultaneously graded pulsatile pressure applying, eye cups were removed slightly.
Experimental: MGD-IPL group
IPL was performed every 3 weeks,3 times in total (0, 3w, 6w).
Lid hygiene with wet cotton swabs(OCuSOFT, Inc., Texas, USA) before treatment. Intense pulsed light (IPL) with a range of wavelength (570 or 620 nm) was performed every 3 weeks,3 times in total (0, 3w, 6w). 10 pulses were transmited from one tragus through nose to the other tragus was a single pass, each treatment needed to do 2 passes. Manual lid massage was done after per IPL treatment.
Experimental: MGD-manual warm compresses
Manual warm compresses were performed every 2 weeks,5 times in total (0, 2w, 4w, 6w, 8w).
Lids hygiene of both eyes with wet cotton swabs(OCuSOFT, Inc., Texas, USA).Commercial heated eye patch was use for 10 min. Manual lid massage every 2 weeks, 5 times in total(0,2w, 4w, 4w, 8w).

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Mophology of meibomian glands
Time Frame: 30 days after commencement of treatment
Infrared photography of inversed upper meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mophology features of meibomian glands in millimeter.
30 days after commencement of treatment
Functional feature of meibomian glands
Time Frame: 30 days after commencement of treatment
Infrared photography of inversed upper and lower meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mean signal intensity of meibomian glands in millimeter.
30 days after commencement of treatment

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Non-invasive tear-film break-up time
Time Frame: 30 days after commencement of treatment
Non-invasived tear-film break-up time is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) with a scale of seconds. Higher values represent a better outcome
30 days after commencement of treatment
Non-invasive tear-film break-up time
Time Frame: 90 days after commencement of treatment
Non-invasived tear-film break-up time is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) with a scale of seconds. Higher values represent a better outcome
90 days after commencement of treatment
Non-invasive tear meniscus height
Time Frame: Baseline
Non-invasived tear meniscus height is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) in millimeter. The value higher than 0.20 mm was provided as a normal condition of tear secretion.
Baseline
Non-invasive tear meniscus height
Time Frame: 30 days after commencement of treatment
Non-invasived tear meniscus height is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) in millimeter. The value higher than 0.20 mm was provided as a normal condition of tear secretion.
30 days after commencement of treatment
Non-invasive tear meniscus height
Time Frame: 90 days after commencement of treatment
Non-invasived tear meniscus height is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) in millimeter. The value higher than 0.20 mm was provided as a normal condition of tear secretion.
90 days after commencement of treatment
Tear film lipid layer thicknesses
Time Frame: Baseline
Tear film lipid layer thicknesses were averaged in nanometer(0-100nm) during 20 seconds by LipiView II (Tear Science, Morrisville, NC).
Baseline
Tear film lipid layer thicknesses
Time Frame: 90 days after commencement of treatment
Tear film lipid layer thicknesses were averaged in nanometer(0-100nm) during 20 seconds by LipiView II (Tear Science, Morrisville, NC).
90 days after commencement of treatment
Tear film lipid layer thicknesses
Time Frame: 180 days after commencement of treatment
Tear film lipid layer thicknesses were averaged in nanometer(0-100nm) during 20 seconds by LipiView II (Tear Science, Morrisville, NC).
180 days after commencement of treatment
The pattern of eye blinks
Time Frame: Baseline
The pattern of eye blinks including numbers of incompleted and completed blinks during 20 seconds were measured by LipiView II (Tear Science, Morrisville, NC).
Baseline
The pattern of eye blinks
Time Frame: 30 days after commencement of treatment
Tear film lipid layer thicknesses and numbers of incomplete blinks during 20 seconds were measured by LipiView II (Tear Science, Morrisville, NC).
30 days after commencement of treatment
The pattern of eye blinks
Time Frame: 90 days after commencement of treatment
Tear film lipid layer thicknesses and numbers of incomplete blinks during 20 seconds were measured by LipiView II (Tear Science, Morrisville, NC).
90 days after commencement of treatment
The pattern of eye blinks
Time Frame: 180 days after commencement of treatment
Tear film lipid layer thicknesses and numbers of incomplete blinks during 20 seconds were measured by LipiView II (Tear Science, Morrisville, NC).
180 days after commencement of treatment
Lid margin signs
Time Frame: baseline
Three lid margin abnormalities (irregular lid margin, plugging of meibomian gland orifices, and anterior or posterior replacement of the mucocutaneous junction) were scored from 0 through 4 according to the number of these abnormalities that were present in each eye. Higher scores represent a worse outcome.
baseline
Lid margin signs
Time Frame: 30 days after commencement of treatment
Three lid margin abnormalities (irregular lid margin, plugging of meibomian gland orifices, and anterior or posterior replacement of the mucocutaneous junction) were scored from 0 through 4 according to the number of these abnormalities that were present in each eye. Higher scores represent a worse outcome.
30 days after commencement of treatment
Lid margin signs
Time Frame: 90 days after commencement of treatment
Three lid margin abnormalities (irregular lid margin, plugging of meibomian gland orifices, and anterior or posterior replacement of the mucocutaneous junction) were scored from 0 through 4 according to the number of these abnormalities that were present in each eye. Higher scores represent a worse outcome.
90 days after commencement of treatment
Lid margin signs
Time Frame: 180 days after commencement of treatment
Three lid margin abnormalities (irregular lid margin, plugging of meibomian gland orifices, and anterior or posterior replacement of the mucocutaneous junction) were scored from 0 through 4 according to the number of these abnormalities that were present in each eye. Higher scores represent a worse outcome.
180 days after commencement of treatment
Meibum expressibility
Time Frame: baseline

Meibum expressibility were measured by firm digital pressure of Meibomian gland diagnostic Expressibility (Tear Sience, Morrisville, NC):

For each of these glands, the secretion was graded as follows: 0:no secretion; 1: inspissated/ toothpaste consistency; 2: cloudy liquid secretion and 3: clear liquid secretion19. The scores were then summed in 15 glands to a single meibomian gland yield secretion score (MGYSS) with a range from 0 to 45. Higher values represent a better outcome.

baseline
Meibum expressibility
Time Frame: 30 days after commencement of treatment

Meibum expressibility were measured by firm digital pressure of Meibomian gland diagnostic Expressibility (Tear Sience, Morrisville, NC):

For each of these glands, the secretion was graded as follows: 0:no secretion; 1: inspissated/ toothpaste consistency; 2: cloudy liquid secretion and 3: clear liquid secretion19. The scores were then summed in 15 glands to a single meibomian gland yield secretion score (MGYSS) with a range from 0 to 45. Higher values represent a better outcome.

30 days after commencement of treatment
Meibum expressibility
Time Frame: 90 days after commencement of treatment

Meibum expressibility were measured by firm digital pressure of Meibomian gland diagnostic Expressibility (Tear Sience, Morrisville, NC):

For each of these glands, the secretion was graded as follows: 0:no secretion; 1: inspissated/ toothpaste consistency; 2: cloudy liquid secretion and 3: clear liquid secretion19. The scores were then summed in 15 glands to a single meibomian gland yield secretion score (MGYSS) with a range from 0 to 45. Higher values represent a better outcome.

90 days after commencement of treatment
Meibum expressibility
Time Frame: 180 days after commencement of treatment

Meibum expressibility were measured by firm digital pressure of Meibomian gland diagnostic Expressibility (Tear Sience, Morrisville, NC):

For each of these glands, the secretion was graded as follows: 0:no secretion; 1: inspissated/ toothpaste consistency; 2: cloudy liquid secretion and 3: clear liquid secretion19. The scores were then summed in 15 glands to a single meibomian gland yield secretion score (MGYSS) with a range from 0 to 45. Higher values represent a better outcome.

180 days after commencement of treatment
Corneal Fluorescein Staining
Time Frame: baseline
Fluorescein was administered into the conjunctival sac under a cobalt blue light from the slit lamp. Corneal epithelial cell disruption was measured via corneal staining (National Eye Institute (NEI) scale (0-3 scale for each area of 5 areas, total score 15). Higher values represent a worse outcome.
baseline
Corneal Fluorescein Staining
Time Frame: 30 days after commencement of treatment
Fluorescein was administered into the conjunctival sac under a cobalt blue light from the slit lamp. Corneal epithelial cell disruption was measured via corneal staining (National Eye Institute (NEI) scale (0-3 scale for each area of 5 areas, total score 15). Higher values represent a worse outcome.
30 days after commencement of treatment
Corneal Fluorescein Staining
Time Frame: 90 days after commencement of treatment
Fluorescein was administered into the conjunctival sac under a cobalt blue light from the slit lamp. Corneal epithelial cell disruption was measured via corneal staining (National Eye Institute (NEI) scale (0-3 scale for each area of 5 areas, total score 15). Higher values represent a worse outcome.
90 days after commencement of treatment
Corneal Fluorescein Staining
Time Frame: 180 days after commencement of treatment
Fluorescein was administered into the conjunctival sac under a cobalt blue light from the slit lamp. Corneal epithelial cell disruption was measured via corneal staining (National Eye Institute (NEI) scale (0-3 scale for each area of 5 areas, total score 15). Higher values represent a worse outcome.
180 days after commencement of treatment
Schirmer I test
Time Frame: baseline
The tear production was measured with Schirmer strips without anaesthesia 15 minutes after corneal staining.
baseline
Schirmer I test
Time Frame: 30 days after commencement of treatment
The tear production was measured with Schirmer strips without anaesthesia 15 minutes after corneal staining.
30 days after commencement of treatment
Schirmer I test
Time Frame: 90 days after commencement of treatment
The tear production was measured with Schirmer strips without anaesthesia 15 minutes after corneal staining.
90 days after commencement of treatment
Schirmer I test
Time Frame: 180 days after commencement of treatment
The tear production was measured with Schirmer strips without anaesthesia 15 minutes after corneal staining.
180 days after commencement of treatment
Non-invasive tear-film break-up time
Time Frame: Baseline
Non-invasived tear-film break-up time is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) with a scale of seconds. Higher values represent a better outcome
Baseline
Non-invasive tear-film break-up time
Time Frame: 15 days after commencement of treatment
Non-invasived tear-film break-up time is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) with a scale of seconds. Higher values represent a better outcome
15 days after commencement of treatment
Non-invasive tear-film break-up time
Time Frame: 180 days after commencement of treatment
Non-invasived tear-film break-up time is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) with a scale of seconds. Higher values represent a better outcome
180 days after commencement of treatment
Non-invasive tear meniscus height
Time Frame: 15 days after commencement of treatment
Non-invasived tear meniscus height is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) in millimeter. The value higher than 0.20 mm was provided as a normal condition of tear secretion.
15 days after commencement of treatment
Non-invasive tear meniscus height
Time Frame: 180 days after commencement of treatment
Non-invasived tear meniscus height is measured by tear film pattern of Keratograph 5M (Oculus, Wetzlar, Germany) in millimeter. The value higher than 0.20 mm was provided as a normal condition of tear secretion.
180 days after commencement of treatment
Tear film lipid layer thicknesses
Time Frame: 15 days after commencement of treatment
Tear film lipid layer thicknesses were averaged in nanometer(0-100nm) during 20 seconds by LipiView II (Tear Science, Morrisville, NC).
15 days after commencement of treatment
Tear film lipid layer thicknesses
Time Frame: 30 days after commencement of treatment
Tear film lipid layer thicknesses were averaged in nanometer(0-100nm) during 20 seconds by LipiView II (Tear Science, Morrisville, NC).
30 days after commencement of treatment
The pattern of eye blinks
Time Frame: 15 days after commencement of treatment
Tear film lipid layer thicknesses and numbers of incomplete blinks during 20 seconds were measured by LipiView II (Tear Science, Morrisville, NC).
15 days after commencement of treatment
Lid margin signs
Time Frame: 15 days after commencement of treatment
Three lid margin abnormalities (irregular lid margin, plugging of meibomian gland orifices, and anterior or posterior replacement of the mucocutaneous junction) were scored from 0 through 4 according to the number of these abnormalities that were present in each eye. Higher scores represent a worse outcome.
15 days after commencement of treatment
Meibum expressibility
Time Frame: 15 days after commencement of treatment

Meibum expressibility were measured by firm digital pressure of Meibomian gland diagnostic Expressibility (Tear Sience, Morrisville, NC):

For each of these glands, the secretion was graded as follows: 0:no secretion; 1: inspissated/ toothpaste consistency; 2: cloudy liquid secretion and 3: clear liquid secretion19. The scores were then summed in 15 glands to a single meibomian gland yield secretion score (MGYSS) with a range from 0 to 45. Higher values represent a better outcome.

15 days after commencement of treatment
Corneal Fluorescein Staining
Time Frame: 15 days after commencement of treatment
Fluorescein was administered into the conjunctival sac under a cobalt blue light from the slit lamp. Corneal epithelial cell disruption was measured via corneal staining (National Eye Institute (NEI) scale (0-3 scale for each area of 5 areas, total score 15). Higher values represent a worse outcome.
15 days after commencement of treatment
Schirmer I test
Time Frame: 15 days after commencement of treatment
The tear production was measured with Schirmer strips without anaesthesia 15 minutes after corneal staining.
15 days after commencement of treatment
Mophology of meibomian glands
Time Frame: 15 days after commencement of treatment
Infrared photography of inversed upper meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mophology features of meibomian glands in millimeter.
15 days after commencement of treatment
Mophology of meibomian glands
Time Frame: 90 days after commencement of treatment
Infrared photography of inversed upper meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mophology features of meibomian glands in millimeter.
90 days after commencement of treatment
Mophology of meibomian glands
Time Frame: 180 days after commencement of treatment
Infrared photography of inversed upper meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mophology features of meibomian glands in millimeter.
180 days after commencement of treatment
Mophology of meibomian glands
Time Frame: Baseline
Infrared photography of inversed upper meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mophology features of meibomian glands in millimeter.
Baseline
Functional feature of meibomian glands
Time Frame: Baseline
Infrared photography of inversed upper and lower meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mean signal intensity of meibomian glands in millimeter.
Baseline
Functional feature of meibomian glands
Time Frame: 15 days after commencement of treatment
Infrared photography of inversed upper and lower meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mean signal intensity of meibomian glands in millimeter.
15 days after commencement of treatment
Functional feature of meibomian glands
Time Frame: 90 days after commencement of treatment
Infrared photography of inversed upper and lower meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mean signal intensity of meibomian glands in millimeter.
90 days after commencement of treatment
Functional feature of meibomian glands
Time Frame: 180 days after commencement of treatment
Infrared photography of inversed upper and lower meibomian glands were measured by Meibography pattern of Keratograph 5M (Oculus, Wetzlar, Germany). The infrared images of Meibography were analysed using the new developed software for identifying the mean signal intensity of meibomian glands in millimeter.
180 days after commencement of treatment

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

October 12, 2020

Primary Completion (Anticipated)

July 1, 2023

Study Completion (Anticipated)

December 1, 2023

Study Registration Dates

First Submitted

July 30, 2019

First Submitted That Met QC Criteria

August 7, 2019

First Posted (Actual)

August 12, 2019

Study Record Updates

Last Update Posted (Actual)

April 25, 2023

Last Update Submitted That Met QC Criteria

April 21, 2023

Last Verified

April 1, 2023

More Information

Terms related to this study

Other Study ID Numbers

  • 20190722

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

YES

IPD Plan Description

Study protocol

IPD Sharing Supporting Information Type

  • STUDY_PROTOCOL

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

product manufactured in and exported from the U.S.

Yes

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Meibomian Gland Dysfunction

Clinical Trials on Thermal pulsation

3
Subscribe