Neurophysiological Marker of ADHD in Children

February 16, 2024 updated by: Junwon Kim, Daegu Catholic University Medical Center

Neurophysiological Marker of Attention Deficit Hyperactivity Disorder in Children

This study investigated quantitative electroencephalography (QEEG) subtypes as auxiliary tools to assess Attention Deficit Hyperactivity Disorder (ADHD). Patient assessed using the Korean version of the Diagnostic Interview Schedule for Children Version IV and were assigned to one of three groups: ADHD, ADHD-Not Otherwise specified (NOS), and Neurotypical (NT). The investigators measure absolute and relative EEG power in 19 channels and conducted an auditory continuous performance test. The investigators analyzed QEEG according to the frequency range: delta (1-4 Hz), theta (4-8 Hz), slow alpha (8-10 Hz), fast alpha (10-13.5 Hz), and beta (13.5-30 Hz). The subjects were then grouped by Ward's method of cluster analysis using the squared Euclidian distance to measure dissimilarities.

Study Overview

Detailed Description

Participants between 7 and 12 years of age diagnosed with ADHD according to the DSM-5 criteria were included in the study. The ADHD diagnosis was based on a Korean version of the Diagnostic Interview Schedule for Children Version IV (DISC-IV), which is a structured interview tool, and these diagnoses were confirmed by multiple child and adolescent psychiatrists. If participants did not meet the ADHD diagnostic criteria of DSM-IV and DISC-IV, they were assigned to the Neurotypical (NT) group. Based on the results of the DISC-IV test, participants were assigned to the ADHD or Non-Other Specified (NOS) group. Patients who met the diagnostic criteria of ADHD in DSM-IV, but whose score did not exceed six, and had a score of more than three in the attention deficit or hyperactivity/impactivity scale of DISC-IV were included in the NOS group. Children with a history of brain damage, neurological disorders, genetic disorders, substance dependence, epilepsy, or any other mental disorder were excluded from participation. Children with an IQ of 70 or lower according to the Korean-Wechsler Intelligence Scale for Children (Fourth Edition) or who were receiving drug treatment were also excluded from this study. The EEG recordings were performed using a SynAmps2 direct-current (DC) amplifier and a 10-20 layout 64-channel Quick-Cap electrode-placement system (Neuroscan Inc., NC, USA). The EEG data were digitally recorded from 19 gold cup electrodes placed according to the international 10-20 system. The impedances were maintained below 5 kΩ, and the sampling rate was 1000 Hz. The investigators use the linked mastoid reference and two additional bipolar electrodes to measure horizontal and vertical eye movements. During the recording, each participant laid in a dimly lit, electrically shielded, sound-attenuated room. Resting EEG recordings were recorded after three minutes with the participants' eyes closed.

Study Type

Observational

Enrollment (Actual)

140

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

    • Nam-gu
      • Daegu, Nam-gu, Korea, Republic of, 42471
        • Daegu Catholic University Medical Center

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

5 years to 10 years (Child)

Accepts Healthy Volunteers

Yes

Sampling Method

Probability Sample

Study Population

Patients who suspected attention-deficit/hyperactivity disorder conducted QEEG and diagnosed with DISC-IV

Description

Inclusion Criteria:

  • Participants between 7 and 12 years of age diagnosed with ADHD according to the DSM-5 criteria were included in the study

Exclusion Criteria:

  • Children with a history of brain damage, neurological disorders, genetic disorders, substance dependence, epilepsy, or any other mental disorder were excluded from participation.
  • Children with an IQ of 70 or lower according to the Korean-Wechsler Intelligence Scale for Children (Fourth Edition) or who were receiving drug treatment were also excluded from this study

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Observational Models: Case-Only
  • Time Perspectives: Retrospective

Cohorts and Interventions

Group / Cohort
Intervention / Treatment
ADHD
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
The KARS is a standardized screening tool for ADHD in Korean children and rating scale completed by the parents.
The DISC-IV is a structured diagnostic tool that was developed for use in epidemiological studies in children and adolescents
NT NeuroTypical
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
The KARS is a standardized screening tool for ADHD in Korean children and rating scale completed by the parents.
The DISC-IV is a structured diagnostic tool that was developed for use in epidemiological studies in children and adolescents
ADHD NOS
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
We used MATLAB 7.0.1 (Math Works, Natick, MA, USA) and the EEGLAB toolbox to pre-process and analyze the EEG recordings. First, the EEG data were down-sampled to 250 Hz. Next, the EEG data were detrended and mean-subtracted to remove the DC component. A 1-Hz high-pass filter and a 60-Hz notch filter were applied to remove eye and electrical noise. Next, independent component analysis (ICA) was performed to remove the well-defined sources of artifacts. ICA has been shown to reliably isolate artifacts caused by eye and muscle movements and heart noise (23). Finally, clinical psychiatrists and EEG experts visually inspected the corrected EEGs. For the analysis, we selected more than two minutes of artifact-free EEG readings from the three-minute recordings
The KARS is a standardized screening tool for ADHD in Korean children and rating scale completed by the parents.
The DISC-IV is a structured diagnostic tool that was developed for use in epidemiological studies in children and adolescents

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
QEEG topographical plots of the results of the statistical comparisons to normative values (z-scores) using Neuroguide software
Time Frame: through study completion, an average of 1 year
The investigators measures QEEG on first outpatient clinic and conduct topography for mapping
through study completion, an average of 1 year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

August 8, 2018

Primary Completion (Actual)

February 28, 2021

Study Completion (Actual)

February 28, 2021

Study Registration Dates

First Submitted

July 1, 2020

First Submitted That Met QC Criteria

July 8, 2020

First Posted (Actual)

July 13, 2020

Study Record Updates

Last Update Posted (Actual)

February 20, 2024

Last Update Submitted That Met QC Criteria

February 16, 2024

Last Verified

February 1, 2024

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

IPD Plan Description

Data will be shared on request for proper reason

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Attention Deficit Hyperactivity Disorder

Clinical Trials on electroencephalography absolute delta power

3
Subscribe