NETosis and Nucleosome Biomarkers in Septic Shock and Critical COVID-19 Patients: An Observational Study

Laure Morimont, Mélanie Dechamps, Clara David, Céline Bouvy, Constant Gillot, Hélène Haguet, Julien Favresse, Lorian Ronvaux, Julie Candiracci, Marielle Herzog, Pierre-François Laterre, Julien De Poortere, Sandrine Horman, Christophe Beauloye, Jonathan Douxfils, Laure Morimont, Mélanie Dechamps, Clara David, Céline Bouvy, Constant Gillot, Hélène Haguet, Julien Favresse, Lorian Ronvaux, Julie Candiracci, Marielle Herzog, Pierre-François Laterre, Julien De Poortere, Sandrine Horman, Christophe Beauloye, Jonathan Douxfils

Abstract

Background: Neutrophil extracellular traps’ (NETs’) formation is a mechanism of defense that neutrophils deploy as an alternative to phagocytosis, to constrain the spread of microorganisms. Aim: The aim was to evaluate biomarkers of NETs’ formation in a patient cohort admitted to intensive care unit (ICU) due to infection. Methods: Forty-six septic shock patients, 22 critical COVID-19 patients and 48 matched control subjects were recruited. Intact nucleosomes containing histone 3.1 (Nu.H3.1), or citrullinated histone H3R8 (Nu.Cit-H3R8), free citrullinated histone (Cit-H3), neutrophil elastase (NE) and myeloperoxidase (MPO) were measured. Results: Significant differences in Nu.H3.1 and NE levels were observed between septic shock and critical COVID-19 subjects as well as with controls (p-values < 0.05). The normalization of nucleosome levels according to the neutrophil count improved the discrimination between septic shock and critical COVID-19 patients. The ratio of Nu.Cit-H3R8 to Nu.H3.1 allowed the determination of nucleosome citrullination degree, presumably by PAD4. Conclusions: H3.1 and Cit-H3R8 nucleosomes appear to be interesting markers of global cell death and neutrophil activation when combined. Nu.H3.1 permits the evaluation of disease severity and differs between septic shock and critical COVID-19 patients, reflecting two distinct potential pathological processes in these conditions.

Keywords: COVID-19; NETs’ formation; SARS-CoV-2; nucleosomes; septic shock.

Conflict of interest statement

Among the authors, M.H., L.R. and J.C. are employees of Belgian Volition SRL and L.M., C.D., C.B. and J.D. are employees of QUALIblood s.a. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Levels of circulating nucleosomes and neutrophil activation biomarkers in control, septic shock and critical COVID-19 populations. Nu.H3.1, Nu.Cit-H3R8, Cit-H3, NE and MPO were compared. Results are expressed as absolute value or normalized by neutrophils level for each individual. All markers were statistically different in septic shock and critical COVID-19 compared to controls. Only Nu.H3.1 and NE were different between septic shock and critical COVID-19 patients. Boxes represent 25th–75th percentile with median. Whiskers represent min to max variation. Squares represent patients with a thromboembolic event, and non-transparent symbols represent dead patients. *, *** and **** represent p-values ≤ 0.05, ≤0.001 and ≤0.0001, respectively. Only differences that are statistically significant are reported. Abbreviations: Cit-H3, citrullinated histone H3 (citrullinated in R2, R8 and R17); MPO, myeloperoxidase; NE, neutrophil elastase; Nu.Cit-H3R8, citrullinated H3R8-nucleosome; Nu.H3.1, H3.1-nucleosome.
Figure 2
Figure 2
Ratio of circulating nucleosomes and neutrophil activation parameters in control, septic shock and critical COVID-19 subjects. The following ratios were proposed: (i) ratio of Cit-H3 on Nu.H3.1, (ii) ratio of Cit-H3 (citrullinated in R2, R8 and R17) on Nu.Cit-H3R8 and (iii) ratio of Nu.Cit-H3R8 on Nu.H3.1. Boxes represent 25th–75th percentile with median. Whiskers represent min to max variation. Squares represent patients with a thromboembolic event, and non-transparent symbols represent dead patients. *, *** and **** represent p-values ≤ 0.05, ≤0.001 and ≤0.0001, respectively. Only differences that are statistically significant are reported. Abbreviations: Cit-H3, citrullinated histone H3 (citrullinated in R2, R8 and R17); Nu.Cit-H3R8, citrullinated H3R8-nucleosome; Nu.H3.1, H3.1-nucleosome.
Figure 3
Figure 3
Circulating nucleosomes and neutrophil activation parameters in septic shock and critical COVID-19 subjects according to the APACHE-II score. Boxes represent 25th–75th percentile with median. Whiskers represent min to max variation. Squares represent patients with a thromboembolic event, and non-transparent symbols represent dead patients. *, ** represent p-values ≤ 0.05 and ≤0.01, respectively. Only differences that are statistically significant are reported. Abbreviations: Cit-H3, citrullinated histone H3 (citrullinated in R2, R8 and R17); MPO, myeloperoxidase; NE, neutrophil elastase; Nu.Cit-H3R8, citrullinated H3R8-nucleosome; Nu.H3.1, H3.1-nucleosome.
Figure 4
Figure 4
Circulating nucleosomes and neutrophil activation parameters in sepsis and COVID-19 subjects according to the SOFA score. Boxes represent 25th–75th percentile with median. Whiskers represent min to max variation. Squares represent patients with a thromboembolic event, and non-transparent symbols represent dead patients. *, ** and *** represent p-values ≤ 0.05, ≤0.01 and ≤0.001, respectively. Only differences that are statistically significant are reported. Abbreviations: Cit-H3, citrullinated histone H3 (citrullinated in R2, R8 and R17); MPO, myeloperoxidase; NE, neutrophil elastase; Nu.Cit-H3R8, citrullinated H3R8-nucleosome; Nu.H3.1, H3.1-nucleosomes.
Figure 5
Figure 5
Comparison of nucleosome markers and derived ratio calculation according to APACHE-II and SOFA scores in septic shock and critical COVID-19 subjects. Boxes represent 25th–75th percentile with median. Whiskers represent min to max variation. Squares represent patients with a thromboembolic event, and non-transparent symbols represent dead patients. *, **, *** and **** represent p-values ≤ 0.05, ≤0.01, ≤0.001 and ≤0.0001, respectively. Only differences that are statistically significant are reported. Abbreviations: Cit-H3, citrullinated histone H3 (citrullinated in R2, R8 and R17); MPO, myeloperoxidase; NE, neutrophil elastase; Nu.Cit-H3R8, citrullinated H3R8-nucleosome; Nu.H3.1, H3.1-nucleosome.

References

    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018;18:134–147. doi: 10.1038/nri.2017.105.
    1. Urban C.F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., Brinkmann V., Jungblut P.R., Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5:e1000639. doi: 10.1371/journal.ppat.1000639.
    1. Petretto A., Bruschi M., Pratesi F., Croia C., Candiano G., Ghiggeri G., Migliorini P. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS ONE. 2019;14:e0218946. doi: 10.1371/journal.pone.0218946.
    1. Holdenrieder S., Stieber P., Bodenmuller H., Fertig G., Furst H., Schmeller N., Untch M., Seidel D. Nucleosomes in serum as a marker for cell death. Clin. Chem. Lab. Med. 2001;39:596–605. doi: 10.1515/CCLM.2001.095.
    1. Zeerleder S., Zwart B., te Velthuis H., Stephan F., Manoe R., Rensink I., Aarden L.A. Nucleosome-releasing factor: A new role for factor VII-activating protease (FSAP) FASEB J. 2008;22:4077–4084. doi: 10.1096/fj.08-110429.
    1. Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010;191:677–691. doi: 10.1083/jcb.201006052.
    1. Wang Y., Wysocka J., Sayegh J., Lee Y.H., Perlin J.R., Leonelli L., Sonbuchner L.S., McDonald C.H., Cook R.G., Dou Y., et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 2004;306:279–283. doi: 10.1126/science.1101400.
    1. Tanner L., Bhongir R.K.V., Karlsson C.A.Q., Le S., Ljungberg J.K., Andersson P., Andersson C., Malmstrom J., Egesten A., Single A.B. Citrullination of extracellular histone H3.1 reduces antibacterial activity and exacerbates its proteolytic degradation. J. Cyst. Fibros. 2021;20:346–355. doi: 10.1016/j.jcf.2020.07.010.
    1. Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A., Blair C., Weber A., Barnes B.J., Egeblad M., et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5:e138999. doi: 10.1172/jci.insight.138999.
    1. Fuchs T.A., Kremer Hovinga J.A., Schatzberg D., Wagner D.D., Lammle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012;120:1157–1164. doi: 10.1182/blood-2012-02-412197.
    1. Cavalier E., Guiot J., Lechner K., Dutsch A., Eccleston M., Herzog M., Bygott T., Schomburg A., Kelly T., Holdenrieder S. Circulating Nucleosomes as Potential Markers to Monitor COVID-19 Disease Progression. Front. Mol. Biosci. 2021;8:600881. doi: 10.3389/fmolb.2021.600881.
    1. Tsourouktsoglou T.D., Warnatsch A., Ioannou M., Hoving D., Wang Q., Papayannopoulos V. Histones, DNA, and Citrullination Promote Neutrophil Extracellular Trap Inflammation by Regulating the Localization and Activation of TLR4. Cell Rep. 2020;31:107602. doi: 10.1016/j.celrep.2020.107602.
    1. Lin G.L., McGinley J.P., Drysdale S.B., Pollard A.J. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front. Immunol. 2018;9:2147. doi: 10.3389/fimmu.2018.02147.
    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Li H., Liu L., Zhang D., Xu J., Dai H., Tang N., Su X., Cao B. SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet. 2020;395:1517–1520. doi: 10.1016/S0140-6736(20)30920-X.
    1. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020;9:727–732. doi: 10.1080/22221751.2020.1746199.
    1. Dechamps M., De Poortere J., Martin M., Gatto L., Daumerie A., Bouzin C., Octave M., Ginion A., Robaux V., Pirotton L., et al. Inflammation-induced coagulopathy substantially differs between COVID-19 and septic shock: A prospective observational study. Front. Med. 2022;8:780750. doi: 10.3389/fmed.2021.780750.
    1. Gillot C., Favresse J., Mullier F., Lecompte T., Dogne J.M., Douxfils J. NETosis and the Immune System in COVID-19: Mechanisms and Potential Treatments. Front. Pharmacol. 2021;12:708302. doi: 10.3389/fphar.2021.708302.
    1. Ma A.C., Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J. Thromb. Haemost. 2008;6:415–420. doi: 10.1111/j.1538-7836.2007.02865.x.
    1. Alhazzani W., Evans L., Alshamsi F., Moller M.H., Ostermann M., Prescott H.C., Arabi Y.M., Loeb M., Ng Gong M., Fan E., et al. Surviving Sepsis Campaign Guidelines on the Management of Adults With Coronavirus Disease 2019 (COVID-19) in the ICU: First Update. Crit. Care Med. 2021;49:e219–e234. doi: 10.1097/CCM.0000000000004899.
    1. Force A.D.T., Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Jones A.E., Trzeciak S., Kline J.A. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit. Care Med. 2009;37:1649–1654. doi: 10.1097/CCM.0b013e31819def97.
    1. Iba T., Nisio M.D., Levy J.H., Kitamura N., Thachil J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: A retrospective analysis of a nationwide survey. BMJ Open. 2017;7:e017046. doi: 10.1136/bmjopen-2017-017046.
    1. Nu.Q H3.1 ELISA Assay—IFU Nu.QH3.1-01R—Version 3
    1. Rothman K.J. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1:43–46. doi: 10.1097/00001648-199001000-00010.
    1. Wu M., Zou Z.Y., Chen Y.H., Wang C.L., Feng Y.W., Liu Z.F. Severe COVID-19-associated sepsis is different from classical sepsis induced by pulmonary infection with carbapenem-resistant klebsiella pneumonia (CrKP) Chin. J. Traumatol. 2022;25:17–24. doi: 10.1016/j.cjtee.2021.11.001.
    1. Zhang J., Huang X., Ding D., Zhang J., Xu L., Hu Z., Xu W., Tao Z. Comparative Study of Acute Lung Injury in COVID-19 and Non-COVID-19 Patients. Front. Med. 2021;8:666629. doi: 10.3389/fmed.2021.666629.
    1. Masso-Silva J.A., Moshensky A., Lam M.T.Y., Odish M., Patel A., Xu L., Hansen E., Trescott S., Nguyen C., Kim R., et al. Increased peripheral blood neutrophil activation phenotypes and NETosis in critically ill COVID-19 patients: A case series and review of the literature. Clin. Infect. Dis. 2021;74:479–489. doi: 10.1093/cid/ciab437.
    1. Chow O.A., von Kockritz-Blickwede M., Bright A.T., Hensler M.E., Zinkernagel A.S., Cogen A.L., Gallo R.L., Monestier M., Wang Y., Glass C.K., et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 2010;8:445–454. doi: 10.1016/j.chom.2010.10.005.
    1. Von Kockritz-Blickwede M., Goldmann O., Thulin P., Heinemann K., Norrby-Teglund A., Rohde M., Medina E. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111:3070–3080. doi: 10.1182/blood-2007-07-104018.
    1. Theoharides T.C. Potential association of mast cells with coronavirus disease 2019. Ann. Allergy Asthma Immunol. 2021;126:217–218. doi: 10.1016/j.anai.2020.11.003.
    1. Knoll R., Schultze J.L., Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front. Immunol. 2021;12:720109. doi: 10.3389/fimmu.2021.720109.
    1. Zhou Y., An L.L., Chaerkady R., Mittereder N., Clarke L., Cohen T.S., Chen B., Hess S., Sims G.P., Mustelin T. Evidence for a direct link between PAD4-mediated citrullination and the oxidative burst in human neutrophils. Sci. Rep. 2018;8:15228. doi: 10.1038/s41598-018-33385-z.
    1. Middleton E.A., He X.Y., Denorme F., Campbell R.A., Ng D., Salvatore S.P., Mostyka M., Baxter-Stoltzfus A., Borczuk A.C., Loda M., et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136:1169–1179. doi: 10.1182/blood.2020007008.
    1. Fuentes Baldarrago A.L., Patel A., Masso Silva J.A., Moshensky A., Perera S., Ma L.J., Pham J., Lam M.T.Y., Odish M.F., Coufal N., et al. Neutrophil Extracellular Trap Formation (NETosis) Increases with Severity of Disease in COVID-19 Patients; Proceedings of the American Thoracic Society 2021 International Conference; San Diego, CA, USA. 14–19 May 2021.
    1. Castanheira F.V.S., Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133:2178–2185. doi: 10.1182/blood-2018-11-844530.
    1. Chen Q., Ye L., Jin Y., Zhang N., Lou T., Qiu Z., Jin Y., Cheng B., Fang X. Circulating nucleosomes as a predictor of sepsis and organ dysfunction in critically ill patients. Int. J. Infect. Dis. 2012;16:e558–e564. doi: 10.1016/j.ijid.2012.03.007.
    1. Shabrish S., Mittra I. Cytokine Storm as a Cellular Response to dsDNA Breaks: A New Proposal. Front. Immunol. 2021;12:622738. doi: 10.3389/fimmu.2021.622738.

Source: PubMed

3
Abonner