Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?

Begoña Cerdá, Margarita Pérez, Jennifer D Pérez-Santiago, Jose F Tornero-Aguilera, Rocío González-Soltero, Mar Larrosa, Begoña Cerdá, Margarita Pérez, Jennifer D Pérez-Santiago, Jose F Tornero-Aguilera, Rocío González-Soltero, Mar Larrosa

Abstract

Regular physical exercise provides many health benefits, protecting against the development of chronic diseases, and improving quality of life. Some of the mechanisms by which exercise provides these effects are the promotion of an anti-inflammatory state, reinforcement of the neuromuscular function, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. Recently, it has been proposed that physical exercise is able to modify gut microbiota, and thus this could be another factor by which exercise promotes well-being, since gut microbiota appears to be closely related to health and disease. The purpose of this paper is to review the recent findings on gut microbiota modification by exercise, proposing several mechanisms by which physical exercise might cause changes in gut microbiota.

Keywords: IgA; LPS; SCFA; TLR4; bile acids; muscle-microbiota axis; myokines.

Figures

Figure 1
Figure 1
Factors influencing gut microbiota.
Figure 2
Figure 2
Gut microbiota-exercise interaction mechanisms.

References

    1. Amirian E. S., Petrosino J. F., Ajami N. J., Liu Y., Mims M. P., Scheurer M. E. (2013). Potential role of gastrointestinal microbiota composition in prostate cancer risk. Infect. Agents Cancer 8:42. 10.1186/1750-9378-8-42
    1. Arrieta M. C., Finlay B. (2014). The intestinal microbiota and allergic asthma. J. Infect. 69(Suppl. 1), S53–S55. 10.1016/j.jinf.2014.07.015
    1. Asano R. Y., Sales M. M., Browne R. A., Moraes J. F., Coelho Junior H. J., Moraes M. R., et al. . (2014). Acute effects of physical exercise in type 2 diabetes: a review. World J. Diabetes 5, 659–665. 10.4239/wjd.v5.i5.659
    1. Axelrod J., Reisine T. D. (1984). Stress hormones: their interaction and regulation. Science 224, 452–459. 10.1126/science.6143403
    1. Backhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., et al. . (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723. 10.1073/pnas.0407076101
    1. Backhed F., Manchester J. K., Semenkovich C. F., Gordon J. I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. U.S.A. 104, 979–984. 10.1073/pnas.0605374104
    1. Bailey M. T. (2014). Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Adv. Exp. Med. Biol. 817, 255–276. 10.1007/978-1-4939-0897-4_12
    1. Bailey M. T., Coe C. L. (1999). Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Developmental psychobiology 35, 146–55. PubMed PMID: .
    1. Bayego E. S., Vila G. S., Martínez I. S. (2012). Prescripción de ejercicio físico: indicaciones, posología y efectos adversos. Med. Clín. 138, 18–24. 10.1016/j.medcli.2010.12.008
    1. Bermon S., Petriz B., Kajeniene A., Prestes J., Castell L., Franco O. L. (2015). The microbiota: an exercise immunology perspective. Exerc. Immunol. Rev. 21, 70–79.
    1. Bhatia V., Tandon R. K. (2005). Stress and the gastrointestinal tract. J. Gastroenterol. Hepatol. 20, 332–339. 10.1111/j.1440-1746.2004.03508.x
    1. Bindels L. B., Delzenne N. M. (2013). Muscle wasting: the gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 45, 2186–2190. 10.1016/j.biocel.2013.06.021
    1. Bishop-Bailey D. (2013). Mechanisms governing the health and performance benefits of exercise. Br. J. Pharmacol. 170, 1153–1166. 10.1111/bph.12399
    1. Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., et al. . (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108, 16050–16055. 10.1073/pnas.1102999108
    1. Brown E. M., Sadarangani M., Finlay B. B. (2013). The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–667. 10.1038/ni.2611
    1. Cannioto R. A., Moysich K. B. (2015). Epithelial ovarian cancer and recreational physical activity: a review of the epidemiological literature and implications for exercise prescription. Gynecol. Oncol. 137, 559–573. 10.1016/j.ygyno.2015.03.016
    1. Choi J. J., Eum S. Y., Rampersaud E., Daunert S., Abreu M. T., Toborek M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect. 121, 725–730. 10.1289/ehp.1306534
    1. Cipriani S., Mencarelli A., Palladino G., Fiorucci S. (2010). FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J. Lipid Res. 51, 771–784. 10.1194/jlr.M001602
    1. Clarke S. F., Murphy E. F., O'Sullivan O., Lucey A. J., Humphreys M., Hogan A., et al. . (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920. 10.1136/gutjnl-2013-306541
    1. Claudel T., Staels B., Kuipers F. (2005). The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol. 25, 2020–2030. 10.1161/01.ATV.0000178994.21828.a7
    1. Corpet D. E., Yin Y., Zhang X. M., Remesy C., Stamp D., Medline A., et al. . (1995). Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein. Nutr. Cancer 23, 271–281. 10.1080/01635589509514381
    1. da Cunha M. J., da Cunha A. A., Ferreira G. K., Baladao M. E., Savio L. E., Reichel C. L., et al. . (2013). The effect of exercise on the oxidative stress induced by experimental lung injury. Life Sci. 92, 218–227. 10.1016/j.lfs.2012.12.005
    1. da Cunha M. J., da Cunha A. A., Scherer E. B., Machado F. R., Loureiro S. O., Jaenisch R. B., et al. . (2014). Experimental lung injury promotes alterations in energy metabolism and respiratory mechanics in the lungs of rats: prevention by exercise. Mol. Cell. Biochem. 389, 229–238. 10.1007/s11010-013-1944-8
    1. David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B., Button J. E., Wolfe B. E., et al. . (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563. 10.1038/nature12820
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J. B., Massart S., et al. . (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107, 14691–14696. 10.1073/pnas.1005963107
    1. Delzenne N. M., Neyrinck A. M., Bäckhed F., Cani P. D. (2011). Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646. 10.1038/nrendo.2011.126
    1. den Besten G., van Eunen K., Groen A. K., Venema K., Reijngoud D. J., Bakker B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340. 10.1194/jlr.R036012
    1. Dicksved J., Halfvarson J., Rosenquist M., Järnerot G., Tysk C., Apajalahti J., et al. . (2008). Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME J. 2, 716–727. 10.1038/ismej.2008.37
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., et al. . (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U.S.A. 107, 11971–11975. 10.1073/pnas.1002601107
    1. Doyle A., Zhang G., Abdel Fattah E. A., Eissa N. T., Li Y. P. (2011). Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 25, 99–110. 10.1096/fj.10-164152
    1. Duclos M., Corcuff J. B., Rashedi M., Fougere V., Manier G. (1997). Trained versus untrained men: different immediate post-exercise responses of pituitary adrenal axis. A preliminary study. Eur. J. Appl. Physiol. Occup. Physiol. 75, 343–350. 10.1007/s004210050170
    1. Eberl G. (2010). A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol. 3, 450–460. 10.1038/mi.2010.20
    1. Evans C. C., LePard K. J., Kwak J. W., Stancukas M. C., Laskowski S., Dougherty J., et al. . (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 9:e92193. 10.1371/journal.pone.0092193
    1. Fischer C. P. (2006). Interleukin-6 in acute exercise and training: what is the biological relevance. Exerc. Immunol. Rev. 12:41.
    1. Flint H. J., Duncan S. H., Scott K. P., Louis P. (2015). Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74, 13–22. 10.1017/S0029665114001463
    1. Freestone P. P., Haigh R. D., Lyte M. (2007). Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol. 7:8. 10.1186/1471-2180-7-8
    1. Galley J. D., Bailey M. T. (2014). Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes 5, 390–396. 10.4161/gmic.28683
    1. Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., et al. . (2006). Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359. 10.1126/science.1124234
    1. Giongo A., Gano K. A., Crabb D. B., Mukherjee N., Novelo L. L., Casella G., et al. . (2011). Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5, 82–91. 10.1038/ismej.2010.92
    1. Gonzalez-Freire M., de Cabo R., Studenski S. A., Ferrucci L. (2014). The neuromuscular junction: aging at the crossroad between nerves and muscle. Front. Aging Neurosci. 6:208. 10.3389/fnagi.2014.00208
    1. Guinane C. M., Cotter P. D. (2013). Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap. Adv. Gastroenterol. 6, 295–308. 10.1177/1756283X13482996
    1. Hagio M., Matsumoto M., Yajima T., Hara H., Ishizuka S. (1985). Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J. Appl. Physiol. 109, 663–668. 10.1152/japplphysiol.00777.2009
    1. Hsu Y. J., Chiu C. C., Li Y. P., Huang W. C., Huang Y. T., Huang C. C., et al. . (2015). Effect of intestinal microbiota on exercise performance in mice. J. Strength Cond. Res. 29, 552–558. 10.1519/JSC.0000000000000644
    1. Inoue Y., Shimojo N. (2015). Microbiome/microbiota and allergies. Semin. Immunopathol. 37, 57–64. 10.1007/s00281-014-0453-5
    1. Islam K. B., Fukiya S., Hagio M., Fujii N., Ishizuka S., Ooka T., et al. . (2011). Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781. 10.1053/j.gastro.2011.07.046
    1. Kang S. S., Jeraldo P. R., Kurti A., Miller M. E., Cook M. D., Whitlock K., et al. . (2014). Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol. Neurodegener. 9:36. 10.1186/1750-1326-9-36
    1. Kasubuchi M., Hasegawa S., Hiramatsu T., Ichimura A., Kimura I. (2015). Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7, 2839–2849. 10.3390/nu7042839
    1. Knowles S. R., Nelson E. A., Palombo E. A. (2008). Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. Biol. Psychol. 77, 132–137. 10.1016/j.biopsycho.2007.09.010
    1. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., et al. . (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1), 4578–4585. 10.1073/pnas.1000081107
    1. Koren O., Goodrich J. K., Cullender T. C., Spor A., Laitinen K., Bäckhed H. K., et al. . (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480. 10.1016/j.cell.2012.07.008
    1. Kumar R. S., Kanmani P., Yuvaraj N., Paari K. A., Pattukumar V., Thirunavukkarasu C., et al. . (2012). Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wistar rats. Appl. Biochem. Biotechnol. 166, 620–631. 10.1007/s12010-011-9453-2
    1. Lambert J. E., Myslicki J. P., Bomhof M. R., Belke D. D., Shearer J., Reimer R. A. (2015). Exercise training modifies gut microbiota in normal and diabetic mice. Appl. Physiol. Nutr. Metab. 40, 749–752. 10.1139/apnm-2014-0452
    1. Legrand P., Beauchamp E., Catheline D., Pédrono F., Rioux V. (2010). Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat. Lipids 45, 975–986. 10.1007/s11745-010-3481-5
    1. Lei Y. M., Nair L., Alegre M. L. (2015). The interplay between the intestinal microbiota and the immune system. Clin. Res. Hepatol. Gastroenterol. 39, 9–19. 10.1016/j.clinre.2014.10.008
    1. Leonel A. J., Alvarez-Leite J. I. (2012). Butyrate: implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 15, 474–479. 10.1097/MCO.0b013e32835665fa
    1. Ley R. E., Backhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 102, 11070–11075. 10.1073/pnas.0504978102
    1. Ley R. E., Peterson D. A., Gordon J. I. (2006a). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848. 10.1016/j.cell.2006.02.017
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. (2006b). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023. 10.1038/4441022a
    1. Lozupone C. A., Stombaugh J., Gonzalez A., Ackermann G., Wendel D., Vazquez-Baeza Y., et al. . (2013). Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714. 10.1101/gr.151803.112
    1. Luger A., Deuster P. A., Kyle S. B., Gallucci W. T., Montgomery L. C., Gold P. W., et al. . (1987). Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training. N. Engl. J. Med. 316, 1309–1315. 10.1056/NEJM198705213162105
    1. Lyte M. (1993). The role of microbial endocrinology in infectious disease. J. Endocrinol. 137, 343–345. 10.1677/joe.0.1370343
    1. Macpherson A. J., Koller Y., McCoy K. D. (2015). The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol. 36, 460–470. 10.1016/j.it.2015.06.006
    1. Martin D. (2011). Physical activity benefits and risks on the gastrointestinal system. South. Med. J. 104, 831–837. 10.1097/SMJ.0b013e318236c263
    1. Martin S. A., Dantzer R., Kelley K. W., Woods J. A. (2014). Voluntary wheel running does not affect lipopolysaccharide-induced depressive-like behavior in young adult and aged mice. Neuroimmunomodulation 21, 52–63. 10.1159/000356144
    1. Matsumoto M., Inoue R., Tsukahara T., Ushida K., Chiji H., Matsubara N., et al. . (2008). Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci. Biotechnol. Biochem. 72, 572–576. 10.1271/bbb.70474
    1. McFarlin B. K., Flynn M. G., Campbell W. W., Stewart L. K., Timmerman K. L. (2004). TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med. Sci. Sports Exerc. 36, 1876–1883. 10.1249/01.MSS.0000145465.71269.10
    1. Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., et al. . (2012). Host-gut microbiota metabolic interactions. Science 336, 1262–1267. 10.1126/science.1223813
    1. Noblet A. J., Gifford S. M. (2002). The sources of stress experienced by professional Australian Footballers. J. Appl. Physiol. 14, 1–13. 10.1080/10413200209339007
    1. O'Toole P. W. (2012). Changes in the intestinal microbiota from adulthood through to old age. Clin. Microbiol. Infect. 18, 44–46. 10.1111/j.1469-0691.2012.03867.x
    1. Oettle G. J. (1991). Effect of moderate exercise on bowel habit. Gut 32, 941–944. 10.1136/gut.32.8.941
    1. O'Hara A. M., Shanahan F. (2006). The gut flora as a forgotten organ. EMBO Rep. 7, 688–693. 10.1038/sj.embor.7400731
    1. Oliveira A. G., Carvalho B. M., Tobar N., Ropelle E. R., Pauli J. R., Bagarolli R. A., et al. . (2011). Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes 60, 784–796. 10.2337/db09-1907
    1. O'Mahony S. M., Marchesi J. R., Scully P., Codling C., Ceolho A. M., Quigley E. M., et al. . (2009). Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65, 263–267. 10.1016/j.biopsych.2008.06.026
    1. O'Sullivan O., Cronin O., Clarke S. F., Murphy E. F., Molloy M. G., Shanahan F., et al. . (2015). Exercise and the microbiota. Gut Microbes 6, 131–136. 10.1080/19490976.2015.1011875
    1. Ou J., DeLany J. P., Zhang M., Sharma S., O'Keefe S. J. D. (2012). Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr. Cancer 64, 34–40. 10.1080/01635581.2012.630164
    1. Owen N., Sparling P. B., Healy G. N., Dunstan D. W., Matthews C. E. (2010). Sedentary behavior: emerging evidence for a new health risk. Mayo Clin. Proc. 85, 1138–1141. 10.4065/mcp.2010.0444
    1. Parracho H. M. R. T., Bingham M. O., Gibson G. R., McCartney A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991. 10.1099/jmm.0.46101-0
    1. Pedersen B. K., Febbraio M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465. 10.1038/nrendo.2012.49
    1. Petersen A. M., Pedersen B. K. (2005). The anti-inflammatory effect of exercise. J. Appl. Physiol. 98, 1154–1162. 10.1152/japplphysiol.00164.2004
    1. Petriz B. A., Castro A. P., Almeida J. A., Gomes C. P., Fernandes G. R., Kruger R. H., et al. . (2014). Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics 15:511. 10.1186/1471-2164-15-511
    1. Pullinger G. D., Carnell S. C., Sharaff F. F., van Diemen P. M., Dziva F., Morgan E., et al. . (2010a). Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect. Immun. 78, 372–380. 10.1128/IAI.01203-09
    1. Pullinger G. D., van Diemen P. M., Carnell S. C., Davies H., Lyte M., Stevens M. P. (2010b). 6-hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar typhimurium in pigs. Vet. Res. 41, 68. 10.1051/vetres/2010040
    1. Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. . (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60. 10.1038/nature11450
    1. Queipo-Ortuño M. I., Seoane L. M., Murri M., Pardo M., Gomez-Zumaquero J. M., Cardona F., et al. . (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS ONE 8:e65465. 10.1371/journal.pone.0065465
    1. Quigley E. M. M. (2013). Gut bacteria in health and disease. Gastroenterol. Hepatol. 9, 560.
    1. Reis Goncalves C. T., Reis Goncalves C. G., de Almeida F. M., Lopes F. D., dos Santos Durao A. C., dos Santos F. A., et al. . (2012). Protective effects of aerobic exercise on acute lung injury induced by LPS in mice. Crit. Care 16, R199. 10.1186/cc11807
    1. Remely M., Tesar I., Hippe B., Gnauer S., Rust P., Haslberger A. G. (2015). Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes 6, 431–439. 10.3920/bm2014.0104
    1. Reynolds R. M., Labad J., Strachan M. W., Braun A., Fowkes F. G., Lee A. J., et al. . (2010). Elevated fasting plasma cortisol is associated with ischemic heart disease and its risk factors in people with type 2 diabetes: the Edinburgh type 2 diabetes study. J. Clin. Endocrinol. Metab. 95, 1602–1608. 10.1210/jc.2009-2112
    1. Ringel-Kulka T., Palsson O. S., Maier D., Carroll I., Galanko J. A., Leyer G., et al. . (2011). Probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 versus placebo for the symptoms of bloating in patients with functional bowel disorders: a double-blind study. J. Clin. Gastroenterol. 45, 518–525. 10.1097/MCG.0b013e31820ca4d6
    1. Robles Alonso V., Guarner F. (2013). Linking the gut microbiota to human health. Br. J. Nutr. 109, S21–S6. 10.1017/S0007114512005235
    1. Round J. L., Mazmanian S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323. 10.1038/nri2515
    1. Salminen S., Gibson G. R., McCartney A. L., Isolauri E. (2004). Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53, 1388–1389. 10.1136/gut.2004.041640
    1. Sanchez A. M., Candau R. B., Bernardi H. (2014). FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell. Mol. Life Sci. 71, 1657–1671. 10.1007/s00018-013-1513-z
    1. Schuler G., Adams V., Goto Y. (2013). Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur. Heart J. 34, 1790–1799. 10.1093/eurheartj/eht111
    1. Sekirov I., Russell S. L., Antunes L. C., Finlay B. B. (2010). Gut microbiota in health and disease. Physiol. Rev. 90, 859–904. 10.1152/physrev.00045.2009
    1. Silverman M. N., Deuster P. A. (2014). Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus 4:20140040. 10.1098/rsfs.2014.0040
    1. Sobhani I., Tap J., Roudot-Thoraval F., Roperch J. P., Letulle S., Langella P., et al. . (2011). Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6:e16393. 10.1371/journal.pone.0016393
    1. Song Y., Liu C., Finegold S. M. (2004). Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 70, 6459–6465. 10.1128/AEM.70.11.6459-6465.2004
    1. Spor A., Koren O., Ley R. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290. 10.1038/nrmicro2540
    1. Stewart L. K., Flynn M. G., Campbell W. W., Craig B. A., Robinson J. P., McFarlin B. K., et al. . (2005). Influence of exercise training and age on CD14 cell-surface expression of toll-like receptor 2 and 4. Brain Behav. Immun. 19, 389–397. 10.1016/j.bbi.2005.04.003
    1. Sutherland W. H., Nye E. R., Macfarlane D. J., Robertson M. C., Williamson S. A. (1991). Fecal bile acid concentration in distance runners. Int. J. Sports Med. 12, 533–536. 10.1055/s-2007-1024729
    1. Tache Y., Perdue M. H. (2004). Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function. Neurogastroenterol. Motil. 16(Suppl. 1), 137–142. 10.1111/j.1743-3150.2004.00490.x
    1. Tamboli C. P., Neut C., Desreumaux P., Colombel J. F. (2004). Dysbiosis in inflammatory bowel disease. Gut 53, 1–4. 10.1136/gut.53.1.1
    1. Teixeira T. F. S., Grzeœkowiak £. M., Salminen S., Laitinen K., Bressan J., Peluzio Mdo C. (2013). Faecal levels of Bifidobacterium and Clostridium coccoides but not plasma lipopolysaccharide are inversely related to insulin and HOMA index in women. Clin. Nutr. 32, 1017–1022. 10.1016/j.clnu.2013.02.008
    1. Thompson-Chagoyán O. C., Maldonado J., Gil A. (2007). Colonization and impact of disease and other factors on intestinal microbiota. Dig. Dis. Sci. 52, 2069–2077. 10.1007/s10620-006-9285-z
    1. Toden S., Bird A. R., Topping D. L., Conlon M. A. (2005). Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutr. Cancer 51, 45–51. 10.1207/s15327914nc5101_7
    1. Turnbaugh P. J., Bäckhed F., Fulton L., Gordon J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223. 10.1016/j.chom.2008.02.015
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031. 10.1038/nature05414
    1. Vaahtovuo J., Munukka E., Korkeamaki M., Luukkainen R., Toivanen P. (2008). Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505.
    1. van Hall G., Steensberg A., Sacchetti M., Fischer C., Keller C., Schjerling P., et al. . (2003). Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010. 10.1210/jc.2002-021687
    1. Vandeputte D., Falony G., Vieira-Silva S., Tito R. Y., Joossens M., Raes J. (2015). Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62. 10.1136/gutjnl-2015-309618
    1. Villena J., Kitazawa H. (2014). Modulation of intestinal TLR4-inflammatory signaling pathways by probiotic microorganisms: lessons learned from Lactobacillus jensenii TL2937. Front. Immunol. 4:512. 10.3389/fimmu.2013.00512
    1. Viloria M., Lara-Padilla E., Campos-Rodríguez R., Jarillo-Luna A., Reyna-Garfias H., López-Sánchez P., et al. . (2011). Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol. Invest. 40, 640–656. 10.3109/08820139.2011.575425
    1. Wang F., Li Q., Wang C., Tang C., Li J. (2012). Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS ONE 7:e42027. 10.1371/journal.pone.0042027
    1. Wang H., Chen J., Hollister K., Sowers L. C., Forman B. M. (1999). Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553. 10.1016/S1097-2765(00)80348-2
    1. Wang H., Zhang W., Zuo L., Zhu W., Wang B., Li Q., et al. . (2013). Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury. Br. J. Nutr. 109, 1990–1998. 10.1017/S0007114512004308
    1. Watanabe M., Houten S. M., Mataki C., Christoffolete M. A., Kim B. W., Sato H., et al. . (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489. 10.1038/nature04330
    1. Wekesa A., Harrison M., Watson R. W. (2015). Physical activity and its mechanistic effects on prostate cancer. Prostate Cancer Prostatic Dis. 18, 197–207. 10.1038/pcan.2015.9
    1. Wertheim B. C., Martinez M. E., Ashbeck E. L., Roe D. J., Jacobs E. T., Alberts D. S., et al. . (2009). Physical activity as a determinant of fecal bile acid levels. Cancer Epidemiol. Biomarkers Prev. 18, 1591–1598. 10.1158/1055-9965.EPI-08-1187
    1. Xu P., Li M., Zhang J., Zhang T. (2012). Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol. 12:283. 10.1186/1471-2180-12-283
    1. Yamashita H., Fujisawa K., Ito E., Idei S., Kawaguchi N., Kimoto M., et al. . (2007). Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 71, 1236–1243. 10.1271/bbb.60668
    1. Yamashita H., Maruta H., Jozuka M., Kimura R., Iwabuchi H., Yamato M., et al. . (2009). Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 73, 570–576. 10.1271/bbb.80634
    1. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. . (2012). Human gut microbiome viewed across age and geography. Nature 486, 222–227. 10.1038/nature11053
    1. Zhu L., Liu W., Alkhouri R., Baker R. D., Bard J. E., Quigley E. M., et al. . (2014). Structural changes in the gut microbiome of constipated patients. Physiol. Genomics 46, 679–686. 10.1152/physiolgenomics.00082.2014
    1. Zhu Y., Luo T. M., Jobin C., Young H. A. (2011). Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 309, 119–127. 10.1016/j.canlet.2011.06.004

Source: PubMed

3
Abonner