Influence of CYP2C19 Metabolizer Status on Escitalopram/Citalopram Tolerability and Response in Youth With Anxiety and Depressive Disorders

Stacey L Aldrich, Ethan A Poweleit, Cynthia A Prows, Lisa J Martin, Jeffrey R Strawn, Laura B Ramsey, Stacey L Aldrich, Ethan A Poweleit, Cynthia A Prows, Lisa J Martin, Jeffrey R Strawn, Laura B Ramsey

Abstract

In pediatric patients, the selective serotonin reuptake inhibitors (SSRIs) escitalopram and citalopram (es/citalopram) are commonly prescribed for anxiety and depressive disorders. However, pharmacogenetic studies examining CYP2C19 metabolizer status and es/citalopram treatment outcomes have largely focused on adults. We report a retrospective study of electronic medical record data from 263 youth < 19 years of age with anxiety and/or depressive disorders prescribed escitalopram or citalopram who underwent routine clinical CYP2C19 genotyping. Slower CYP2C19 metabolizers experienced more untoward effects than faster metabolizers (p = 0.015), including activation symptoms (p = 0.029) and had more rapid weight gain (p = 0.018). A larger proportion of slower metabolizers discontinued treatment with es/citalopram than normal metabolizers (p = 0.007). Meanwhile, faster metabolizers responded more quickly to es/citalopram (p = 0.005) and trended toward less time spent in subsequent hospitalizations (p = 0.06). These results highlight a disparity in treatment outcomes with es/citalopram treatment in youth with anxiety and/or depressive disorders when standardized dosing strategies were used without consideration of CYP2C19 metabolizer status. Larger, prospective trials are warranted to assess whether tailored dosing of es/citalopram based on CYP2C19 metabolizer status improves treatment outcomes in this patient population.

Keywords: CYP2C19; SSRI (selective serotonin reuptake inhibitor); antidepressant; anxiety disorders; citalopram; depressive disorder; escitalopram; pharmacogenetics.

Figures

FIGURE 1
FIGURE 1
(A) Total number of side effects experienced during treatment with escitalopram or citalopram (es/citalopram) by 248 patients included in the tolerability analysis. CYP2C19 metabolizer status is associated with the total number of side effects experienced (p = 0.015). The association with CYP2C19 metabolizer status remained significant (p = 0.019) in a multivariate regression model that accounted for es/citalopram dose and concomitant medications. Mean and standard deviation are indicated by the bar and whiskers. (B) Discontinuation rates by CYP2C19 metabolizer status in the tolerability analysis with a documented reason for discontinuation of es/citalopram in the electronic medical record. PMs and IMs were significantly more likely to discontinue es/citalopram relative to NMs (p = 0.007, χ2), while RMs and UMs were not (p = 0.20, χ2). PM, poor metabolizer; IM, intermediate metabolizer; NM, normal metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer; n, number.
FIGURE 2
FIGURE 2
(A) Cumulative days in the inpatient psychiatric unit (over the entire follow-up period after the initial hospitalization) correlated with the total number of side effects in a linear model (regression line in black p = 2 × 10-10). (B) Cumulative days patients were admitted to the inpatient psychiatric unit during treatment with es/citalopram after the initial hospitalization by CYP2C19 metabolizer status, p = 0.076. Mean and standard deviation are indicated by the bar and whiskers. PM, poor metabolizer; IM, intermediate metabolizer; NM, normal metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer; n, number.
FIGURE 3
FIGURE 3
(A) Time to first weight gain concern during es/citalopram treatment is associated with CYP2C19 metabolizer status (p = 0.018, log-rank test for trend). B, Number of activation side effects during es/citalopram treatment is associated with CYP2C19 metabolizer status (p = 0.029, one-way ANOVA with test for trend). Median and interquartile range are indicated by the bar and whiskers. PM, poor metabolizer; IM, intermediate metabolizer; NM, normal metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer; n, number.
FIGURE 4
FIGURE 4
(A) Percentages of patients in the response analysis who achieved or did not achieve a response while prescribed es/citalopram (p = 0.12, χ2). (B) Time to response was associated with CYP2C19 metabolizer status (p = 0.005, log-rank test for trend). (C) Time to response dose among patients who achieved a response was not different by CYP2C19 metabolizer status (p = 0.27, log-rank test for trend). (D) Response dose was not associated with CYP2C19 metabolizer status (p = 0.67, one-way ANOVA with test for trend). Mean and standard deviation are indicated by the bar and whiskers. PM, poor metabolizer; IM, intermediate metabolizer; NM, normal metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer; n, number.

References

    1. Altar C. A., Hornberger J., Shewade A., Cruz V., Garrison J., Mrazek D. (2013). Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int. Rev. Psychiatry 25 509–533. 10.3109/09540261.2013.825579
    1. Bardach N. S., Coker T. R., Zima B. T., Murphy J. M., Knapp P., Richardson L. P., et al. (2014). Common and costly hospitalizations for pediatric mental health disorders. Pediatrics 133 602–609. 10.1542/peds.2013-3165
    1. Baumgartner J. L., Emslie G. J., Crismon M. L. (2002). Citalopram in children and adolescents with depression or anxiety. Ann. Pharmacother. 36 1692–1697. 10.1345/aph.1C078
    1. Bishop J. R., Najjar F., Rubin L. H., Guter S. J., Owley T., Mosconi M. W., et al. (2015). Escitalopram pharmacogenetics: CYP2C19 relationships with dosing and clinical outcomes in autism spectrum disorder. Pharmacogenet. Genomics 25 548–554. 10.1097/FPC.0000000000000173
    1. Bussing R., Murphy T. K., Storch E. A., McNamara J. P., Reid A. M., Garvan C. W., et al. (2013). Psychometric properties of the Treatment-Emergent Activation and Suicidality Assessment Profile (TEASAP) in youth with OCD. Psychiatry Res. 205 253–261. 10.1016/j.psychres.2012.09.019
    1. Calarge C. A., Mills J. A., Janz K. F., Burns T. L., Coryell W. H., Zemel B. S. (2017). Body composition in adolescents during treatment with selective serotonin reuptake inhibitors. Pediatrics 140:e20163943. 10.1542/peds.2016-3943
    1. Carlsson B., Olsson G., Reis M., Walinder J., Nordin C., Lundmark J., et al. (2001). Enantioselective analysis of citalopram and metabolites in adolescents. Ther. Drug Monit. 23 658–664. 10.1097/00007691-200112000-00011
    1. Caudle K. E., Dunnenberger H. M., Freimuth R. R., Peterson J. F., Burlison J. D., Whirl-Carrillo M., et al. (2017). Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med. 19 215–223. 10.1038/gim.2016.87
    1. Chang M., Tybring G., Dahl M. L., Lindh J. D. (2014). Impact of cytochrome P450 2C19 polymorphisms on citalopram/escitalopram exposure: a systematic review and meta-analysis. Clin. Pharmacokinet. 53 801–811. 10.1007/s40262-014-0162-1
    1. Cipriani A., Zhou X., Del Giovane C., Hetrick S. E., Qin B., Whittington C., et al. (2016). Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: a network meta-analysis. Lancet 388 881–890. 10.1016/S0140-6736(16)30385-3
    1. Czaja A. S., Valuck R. J., Anderson H. D. (2013). Comparative safety of selective serotonin reuptake inhibitors among pediatric users with respect to adverse cardiac events. Pharmacoepidemiol. Drug Saf. 22 607–614. 10.1002/pds.3420
    1. Dobson E. T., Bloch M., Strawn J. R. (2019). Network meta-analysis: efficacy and tolerability of pharmacotherapy for pediatric anxiety disorders. J. Clin. Psychiatry 80:17r12064.
    1. Emslie G. J., Ventura D., Korotzer A., Tourkodimitris S. (2009). Escitalopram in the treatment of adolescent depression: a randomized placebo-controlled multisite trial. J. Am. Acad. Child Adolesc. Psychiatry 48 721–729. 10.1097/CHI.0b013e3181a2b304
    1. Findling R. L., McNamara N. K., Stansbrey R. J., Feeny N. C., Young C. M., Peric F. V., et al. (2006). The relevance of pharmacokinetic studies in designing efficacy trials in juvenile major depression. J. Child Adolesc. Psychopharmacol. 16 131–145. 10.1089/cap.2006.16.131
    1. Findling R. L., Robb A., Bose A. (2013). Escitalopram in the treatment of adolescent depression: a randomized, double-blind, placebo-controlled extension trial. J. Child Adolesc. Psychopharmacol. 23 468–480. 10.1089/cap.2012.0023
    1. Gjestad C., Westin A. A., Skogvoll E., Spigset O. (2015). Effect of proton pump inhibitors on the serum concentrations of the selective serotonin reuptake inhibitors citalopram, escitalopram, and sertraline. Ther. Drug Monit. 37 90–97. 10.1097/FTD.0000000000000101
    1. Goodman W. K., Bose A., Wang Q. (2005). Treatment of generalized anxiety disorder with escitalopram: pooled results from double-blind, placebo-controlled trials. J. Affect. Dis. 87 161–167. 10.1016/j.jad.2004.11.011
    1. Guy W. (1976). ECDEU Assessment Manual for Psychopharmacology. Rockville, MD: U.S. Department of Health, Education.
    1. Helsby N. A., Burns K. E. (2012). Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19. Front. Genet. 3:206 10.3389/fgene.2012.00206
    1. Herrlin K., Yasui-Furukori N., Tybring G., Widén J., Gustafsson L. L., Bertilsson L. (2003). Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br. J. Clin. Pharmacol. 56 415–421. 10.1046/j.1365-2125.2003.01874.x
    1. Hicks J. K., Bishop J. R., Sangkuhl K., Müller D. J., Ji Y., Leckband S. G., et al. (2015). Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 98 127–134. 10.1002/cpt.147
    1. Hodgson K., Tansey K., Dernovsek M. Z., Hauser J., Henigsberg N., Maier W., et al. (2014). Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J. Psychopharmacol. 28 133–141. 10.1177/0269881113512041
    1. Hodgson K., Tansey K. E., Uher R., Dernovšek M. Z., Mors O., Hauser J., et al. (2015). Exploring the role of drug-metabolising enzymes in antidepressant side effects. Psychopharmacology 232 2609–2617. 10.1007/s00213-015-3898-x
    1. Horstmann S., Lucae S., Menke A., Hennings J. M., Ising M., Roeske D., et al. (2010). Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology 35 727–740. 10.1038/npp.2009.180
    1. Hu X. Z., Rush A. J., Charney D., Wilson A. F., Sorant A. J., Papanicolaou G. J., et al. (2007). Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch. Gen. Psychiatry 64 783–792. 10.1001/archpsyc.64.7.783
    1. Huezo-Diaz P., Perroud N., Spencer E. P., Smith R., Sim S., Virding S., et al. (2012). CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP. J. Psychopharmacol. 26 398–407. 10.1177/0269881111414451
    1. Isolan L., Pheula G., Salum G. A., Oswald S., Rohde L. A., Manfro G. G. (2007). An open-label trial of escitalopram in children and adolescents with social anxiety disorder. J. Child Adolesc. Psychopharmacol. 17 751–760. 10.1089/cap.2007.0007
    1. Jackson A. (2008). Lexapro®(Escitalopram Oxalate), Application Numbers 21323/S-30/S30 and 21365/S-20/S21 [Clinical Pharmacology and Biopharmaceutics Review] Forest Laboratories 2008. Available at: (accessed November 21 2018).
    1. Jin Y., Pollock B. G., Frank E., Cassano G. B., Rucci P., Müller D. J., et al. (2010). Effect of age, weight, and CYP2C19 genotype on escitalopram exposure. J. Clin. Pharmacol. 50 62–72. 10.1177/0091270009337946
    1. Jukic M. M., Haslemo T., Molden E., Ingelman-Sundberg M. (2018). Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients. Am. J. Psychiatry 175 463–470. 10.1176/appi.ajp.2017.17050550
    1. Koukouritaki S. B., Manro J. R., Marsh S. A., Stevens J. C., Rettie A. E., McCarver D. G., et al. (2004). Developmental expression of human hepatic CYP2C9 and CYP2C19. J. Pharmacol. Exp. Ther. 308 965–974. 10.1124/jpet.103.060137
    1. LEXAPRO (2018). Lexapro (Escitalopram Oxala) [Package Insert]. St. Louis, MO: Forest Laboratories, Inc. Available at:
    1. Locher C., Koechlin H., Zion S. R., Werner C., Pine D. S., Kirsch I., et al. (2017). Efficacy and safety of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and placebo for common psychiatric disorders among children and adolescents: a systematic review and meta-analysis. JAMA Psychiatry 74 1011–1020. 10.1001/jamapsychiatry.2017.2432
    1. Luft M. J., Lamy M., DelBello M. P., McNamara R. K., Strawn J. R. (2018). Antidepressant-induced activation in children and adolescents: risk, recognition and management. Curr. Probl. Pediatr. Adolesc. Health Care 48 50–62. 10.1016/j.cppeds.2017.12.001
    1. Maciel A., Cullors A., Lukowiak A. A., Garces J. (2018). Estimating cost savings of pharmacogenetic testing for depression in real-world clinical settings. Neuropsychiatr. Dis. Treat. 14 225–230. 10.2147/NDT.S145046
    1. Merikangas K. R., He J. P., Burstein M., Swanson S. A., Avenevoli S., Cui L., et al. (2010). Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 49 980–989. 10.1016/j.jaac.2010.05.017
    1. Moriyama B., Obeng A. O., Barbarino J., Penzak S. R., Henning S. A., Scott S. A., et al. (2016). Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin. Pharmacol. Ther. 102 45–51. 10.1002/cpt.583
    1. Mrazek D. A., Biernacka J. M., O’Kane D. J., Black J. L., Cunningham J. M., Drews M. S., et al. (2011). CYP2C19 variation and citalopram response. Pharmacogenet. Genomics 21 1–9. 10.1097/FPC.0b013e328340bc5a
    1. Ng C., Sarris J., Singh A., Bousman C., Byron K., Peh L. H., et al. (2013). Pharmacogenetic polymorphisms and response to escitalopram and venlafaxine over 8 weeks in major depression. Hum. Psychopharmacol. 28 516–522. 10.1002/hup.2340
    1. Owens M. J., Knight D. L., Nemeroff C. B. (2001). Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol. Psychiatry 50 345–350. 10.1016/S0006-3223(01)01145-3
    1. Prince J. B., Bostic J. Q., Monuteaux M., Brown K., Place S. (2002). Citalopram for the treatment of adolescent anxiety disorders: a pilot study. Psychopharmacol. Bull. 36 100–107.
    1. Prows C. A., Nick T. G., Saldaña S. N., Pathak S., Liu C., Zhang K., et al. (2009). Drug-metabolizing enzyme genotypes and aggressive behavior treatment response in hospitalized pediatric psychiatric patients. J. Child Adolesc. Psychopharmacol. 19 385–394. 10.1089/cap.2008.0103
    1. Ramsey L. B., Aldrich S., Poweleit E., Prows C., Martin L., Strawn J. (2018a). Racial differences in escitalopram/citalopram-related weight gain in children and adolescents: a natural language processing-based electronic medical record study. J. Child Adolesc. Psychopharmacol. 10.1089/cap.2018.0110 [Epub ahead of print].
    1. Ramsey L. B., Prows C. A., Zhang K., Saldana S. N., Sorter M. T., Pestian J. P., et al. (2018b). Implementation of pharmacogenetics at cincinnati children’s hospital medical center: lessons learned over 14 years of personalizing medicine. Clin. Pharmacol. Ther. 105 49–52. 10.1002/cpt.1165
    1. Reis M., Cherma M. D., Carlsson B., Bengtsson F., Task Force for Tdm of Escitalopram in Sweden . (2007). Therapeutic drug monitoring of escitalopram in an outpatient setting. Ther. Drug Monit. 29 758–766. 10.1097/FTD.0b013e31815b3f62
    1. Rocha A., Coelho E. B., Sampaio S. A., Lanchote V. L. (2010). Omeprazole preferentially inhibits the metabolism of (+)-(S)-citalopram in healthy volunteers. Br. J. Clin. Pharmacol. 70 43–51. 10.1111/j.1365-2125.2010.03649.x
    1. Sakolsky D. J., Perel J. M., Emslie G. J., Clarke G. N., Wagner K. D., Vitiello B., et al. (2011). Antidepressant exposure as a predictor of clinical outcomes in the Treatment of Resistant Depression in Adolescents (TORDIA) study. J. Clin Psychopharmacol. 31 92–97. 10.1097/JCP.0b013e318204b117
    1. Sanford J. C., Guo Y., Sadee W., Wang D. (2013). Regulatory polymorphisms in CYP2C19 affecting hepatic expression. Drug Metabol. Drug Interact. 28 23–30. 10.1515/dmdi-2012-0038
    1. Schirman S., Kronenberg S., Apter A., Brent D., Melhem N., Pick N., et al. (2010). Effectiveness and tolerability of citalopram for the treatment of depression and anxiety disorders in children and adolescents: an open-label study. J. Neural Transm. 117 139–145. 10.1007/s00702-009-0330-x
    1. Soni A. (2015). Top Five Most Costly Conditions among Children, Ages 0-17 2012: Estimates for the U.S. Civilian Noninstitutionalized Population. Rockville, MD: A. F. H. R. A. Quality.
    1. Strawn J. R., Mills J. A., Sauley B. A., Welge J. A. (2018). The Impact of antidepressant dose and class on treatment response in pediatric anxiety disorders: a meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 57 235.e2–244.e2. 10.1016/j.jaac.2018.01.015
    1. Strawn J. R, Poweleit E., Ramsey L. B. (2019). CYP2C19-guided escitalopram and sertraline dosing in pediatric patients: a pharmacokinetic modeling study. J. Child Adolesc. Psychopharmacol. (in press).
    1. Strawn J. R., Welge J. A., Wehry A. M., Keeshin B., Rynn M. A. (2015). Efficacy and tolerability of antidepressants in pediatric anxiety disorders: a systematic review and meta-analysis. Depress. Anxiety 32 149–157. 10.1002/da.22329
    1. Tatsumi M., Groshan K., Blakely R. D., Richelson E. (1997). Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol 340 249–258. 10.1016/S0014-2999(97)01393-9
    1. von Moltke L. L., Greenblatt D. J., Grassi J. M., Granda B. W., Venkatakrishnan K., Duan S. X., et al. (1999). Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol. Psychiatry 46 839–849. 10.1016/S0006-3223(98)00353-9
    1. Wagner K. D., Jonas J., Findling R. L., Ventura D., Saikali K. (2006). A double-blind, randomized, placebo-controlled trial of escitalopram in the treatment of pediatric depression. J. Am. Acad. Child Adolesc. Psychiatry 45 280–288. 10.1097/01.chi.0000192250.38400.9e
    1. Wagner K. D., Robb A. S., Findling R. L., Jin J., Gutierrez M. M., Heydorn W. E. (2004). A randomized, placebo-controlled trial of citalopram for the treatment of major depression in children and adolescents. Am. J. Psychiatry 161 1079–1083. 10.1176/appi.ajp.161.6.1079
    1. Wehry A. M., Ramsey L., Dulemba S. E., Mossman S. A., Strawn J. R. (2018). Pharmacogenomic testing in child and adolescent psychiatry: An evidence-based review. Curr. Probl. Pediatr. Adolesc. Health Care 48 40–49. 10.1016/j.cppeds.2017.12.003
    1. Winner J. G., Dechairo B. (2015). Combinatorial versus individual gene pharmacogenomic testing in mental health: a perspective on context and implications on clinical utility. Yale J. Biol. Med. 88 375–382.
    1. Zhu J., Klein-Fedyshin M., Stevenson J. M. (2017). Serotonin transporter gene polymorphisms and selective serotonin reuptake inhibitor tolerability: review of pharmacogenetic evidence. Pharmacotherapy 37 1089–1104. 10.1002/phar.1978

Source: PubMed

3
Abonner