Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na⁺/K⁺-ATPase

Fatimah K Khalaf, Prabhatchandra Dube, Amal Mohamed, Jiang Tian, Deepak Malhotra, Steven T Haller, David J Kennedy, Fatimah K Khalaf, Prabhatchandra Dube, Amal Mohamed, Jiang Tian, Deepak Malhotra, Steven T Haller, David J Kennedy

Abstract

In 1972 Neal Bricker presented the "trade-off" hypothesis in which he detailed the role of physiological adaptation processes in mediating some of the pathophysiology associated with declines in renal function. In the late 1990's Xie and Askari published seminal studies indicating that the Na⁺/K⁺-ATPase (NKA) was not only an ion pump, but also a signal transducer that interacts with several signaling partners. Since this discovery, numerous studies from multiple laboratories have shown that the NKA is a central player in mediating some of these long-term "trade-offs" of the physiological adaptation processes which Bricker originally proposed in the 1970's. In fact, NKA ligands such as cardiotonic steroids (CTS), have been shown to signal through NKA, and consequently been implicated in mediating both adaptive and maladaptive responses to volume overload such as fibrosis and oxidative stress. In this review we will emphasize the role the NKA plays in this "trade-off" with respect to CTS signaling and its implication in inflammation and fibrosis in target organs including the heart, kidney, and vasculature. As inflammation and fibrosis exhibit key roles in the pathogenesis of a number of clinical disorders such as chronic kidney disease, heart failure, atherosclerosis, obesity, preeclampsia, and aging, this review will also highlight the role of newly discovered NKA signaling partners in mediating some of these conditions.

Keywords: Na+/K+-ATPase; cardiotonic steroids; fibrosis; inflammation; signaling.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic illustrating the role of the CTS-NKA-Src (cardiotonic steroids- Na+/K+-ATPase-Src kinase) signaling axis in both its physiologic natriuretic role as well as the trade-off effects induced through stimulation of cardiac, renal, and vascular cell types.
Figure 2
Figure 2
Summary of the known proinflammatory and profibrotic signaling mechanisms mediated by the CTS-NKA-Src signaling axis in cardiac [44,63,73,74,75,76,77,78,80,81,82], renal [32,39,43,51,52,55,63,64,65]], vascular [69,70,92], adipocyte [93,94,95,96,97,98,99,100,101,102,103,104,105], and immune cells [16,56].
Figure 3
Figure 3
Summary of novel signaling interactions identified between the NKA and other cell surface receptors in renal epithelial and immune cell types [14,24,56,132,133,134,135,136,137,138,139,140,141,142,143].

References

    1. Xie Z. Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann. N. Y. Acad. Sci. 2003;986:497–503. doi: 10.1111/j.1749-6632.2003.tb07234.x.
    1. Kometiani P., Li J., Gnudi L., Kahn B.B., Askari A., Xie Z. Multiple Signal Transduction Pathways Link Na+/K+-ATPase to growth-related genes in cardiac myocytes the roles of Ras and mitogen-ACTIVATED protein kinases. J. Biol. Chem. 1998;273:15249–15256. doi: 10.1074/jbc.273.24.15249.
    1. Xie Z., Askari A. Na/K-ATPase as a signal transducer. Eur. J. Biochem. 2002;269:2434–2439. doi: 10.1046/j.1432-1033.2002.02910.x.
    1. Fan X., Xie J., Tian J. Reducing Cardiac Fibrosis: Na/K-ATPase Signaling Complex as a Novel Target. Cardiovasc. Pharmacol. Open Access. 2017;6 doi: 10.4172/2329-6607.1000204.
    1. Liu J., Lilly M.N., Shapiro J.I. Targeting Na/K-ATPase Signaling: A New Approach to Control Oxidative Stress. Curr. Pharm. Des. 2018;24:359–364. doi: 10.2174/1381612824666180110101052.
    1. Wang X., Zhang J., Cui X., Wang J., Cai L., Pierre S.V., Xie Z. Na/K-ATPase α1 Isoform as a Critical Signal Integrator in Embryonic Development. FASEB J. 2017;31:1007.52.
    1. Buckalew V.M. Endogenous digitalis-like factors: An overview of the history. Front. Endocrinol. 2015;6:49. doi: 10.3389/fendo.2015.00049.
    1. Srikanthan K., Shapiro J.I., Sodhi K. The role of Na/K-ATPase signaling in oxidative stress related to obesity and cardiovascular disease. Molecules. 2016;21:1172. doi: 10.3390/molecules21091172.
    1. Sweadner K.J., Arystarkhova E., Penniston J., Cook J., Swoboda K., Brashear A., Ozelius L. Structure-Phenotype Relationships in ATP1A3 (Na, K-ATPase) Diseases (S17. 007) [(accessed on 24 August 2018)];2017 Available online: .
    1. Bricker N.S. On the pathogenesis of the uremic state: An exposition of the trade-off hypothesis. N. Engl. J. Med. 1972;286:1093–1099.
    1. Liu C., Lou M., Ding Y., Wang Y., Huang Y., Shao D., Chen W. Ouabain-induced apoptosis and inhibition of viability of tubulointerstitial cells by regulating NKA/pSrc/pERK/pAkt/pS6k/caspase 3 may contribute to lupus nephritis development. Int. J. Clin. Exp. Pathol. 2018;11:2305–2313.
    1. Khalaf F.K., Mohamed A., Kleinhenz A., Crawford E., Tian J., Xie Z., Malhotra D., Haller S., Kennedy D. Cardiotonic steroid signaling through Na/K-atpase-A-1 and src kinase enhance functional interactions between immune cells and endo/epithelial cells. J. Investig. Med. 2018;66:859.
    1. Xie J.X., Shapiro A.P., Shapiro J.I. The trade-off between dietary salt and cardiovascular disease; a role for Na/K-ATPase signaling? Front. Endocrinol. 2014;5:97. doi: 10.3389/fendo.2014.00097.
    1. Bagrov A.Y., Shapiro J.I., Fedorova O.V. Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev. 2009;61:9–38. doi: 10.1124/pr.108.000711.
    1. Dostanic-Larson I., Van Huysse J.W., Lorenz J.N., Lingrel J.B. The highly conserved cardiac glycoside binding site of Na, K-ATPase plays a role in blood pressure regulation. Proc. Natl. Acad. Sci. USA. 2005;102:15845–15850. doi: 10.1073/pnas.0507358102.
    1. Chen Y., Huang W., Yang M., Xin G., Cui W., Xie Z., Silverstein R.L. Cardiotonic Steroids Stimulate Macrophage Inflammatory Responses Through a Pathway Involving CD36, TLR4, and Na/K-ATPase. Arterioscler. Thromb. Vasc. Biol. 2017;37:1462–1469. doi: 10.1161/ATVBAHA.117.309444.
    1. Drummond C., Hill M., Cooper C., Shapiro J., Tian J. MicroRNA 29b and Cardiotonic Steroid-Induced Cardiac Fibrosis in Adult Cardiac Fibroblasts. FASEB J. 2015;29:814–815.
    1. Cavalcante-Silva L.H.A., Lima É.D.A., Carvalho D.M., Sales-Neto J.M., Alves A.K.D.A., Galvão J.G.F.M., Silva J.S.d.F.d., Mascarenhas S.R. Much More than a Cardiotonic Steroid: Modulation of Inflammation by Ouabain. Front. Physiol. 2018;9:895. doi: 10.3389/fphys.2018.00001.
    1. Ogawa H., Motoyama K., Cornelius F., Vilsen B., Toyoshima C. X-Ray Crystallographic Study of Na, K-ATPase in Complex with Cardiotonic Steroids. Biophys. J. 2015;108:197a. doi: 10.1016/j.bpj.2014.11.1088.
    1. Xie Z. Ouabain interaction with cardiac Na/K-ATPase reveals that the enzyme can act as a pump and as a signal transducer. Cell. Mol. Biol. 2001;47:383–390.
    1. Aperia A., Akkuratov E.E., Fontana J.M., Brismar H. Na+-K+-ATPase, a new class of plasma membrane receptors. Am. J. Physiol.-Cell Physiol. 2016;310:C491–C495. doi: 10.1152/ajpcell.00359.2015.
    1. Morth J.P., Pedersen B.P., Buch-Pedersen M.J., Andersen J.P., Vilsen B., Palmgren M.G., Nissen P. A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nat. Rev. Mol. Cell Biol. 2011;12:60–70. doi: 10.1038/nrm3031.
    1. Jørgensen P.L. Structure, function and regulation of Na, K-ATPase in the kidney. Kidney Int. 1986;29:10–20. doi: 10.1038/ki.1986.3.
    1. Xie J.X., Zhang S., Cui X., Zhang J., Yu H., Khalaf F.K., Malhotra D., Kennedy D.J., Shapiro J.I., Tian J. Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma. Nephrol. Dial. Transplant. 2018;33:1138–1149. doi: 10.1093/ndt/gfx334.
    1. Blanco G., Mercer R.W. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am. J. Physiol.-Ren. Physiol. 1998;275:F633–F650. doi: 10.1152/ajprenal.1998.275.5.F633.
    1. Adams R.J., Schwartz A., Grupp G., Grupp I., Lee S.W., Wallick E.T., Powell T., Twist V.W., Gathiram P. High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium. Nature. 1982;296:167–169. doi: 10.1038/296167a0.
    1. Kutz L.C., Mukherji S., Marck P., Cui X., Heiny J.A., Blanco G., Pierre S.V., Xie Z. Isoform-specific role of Na/K-ATPase α1 in skeletal muscle growth and performance. FASEB J. 2017;31:1007.50.
    1. Klimanova E.A., Petrushanko I.Y., Mitkevich V.A., Anashkina A.A., Orlov S.N., Makarov A.A., Lopina O.D. Binding of ouabain and marinobufagenin leads to different structural changes in Na, K-ATPase and depends on the enzyme conformation. FEBS Lett. 2015;589:2668–2674. doi: 10.1016/j.febslet.2015.08.011.
    1. Hamlyn J.M., Manunta P. Endogenous cardiotonic steroids in kidney failure: A review and an hypothesis. Adv. Chron. Kidney Dis. 2015;22:232–244. doi: 10.1053/j.ackd.2014.12.005.
    1. Wolfgang B., Eleanor E.B. Collection of Toad Venoms and Chemistry of the Toad Venom Steroids. Academic Press; London, UK: 1971.
    1. Bagrov A.Y., Fedorova O.V., Dmitrieva R.I., Howald W.N., Hunter A.P., Kuznetsova E.A., Shpen V.M. Characterization of a urinary bufodienolide Na+, K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension. 1998;31:1097–1103. doi: 10.1161/01.HYP.31.5.1097.
    1. Fedorova L.V., Raju V., El-Okdi N., Shidyak A., Kennedy D.J., Vetteth S., Giovannucci D.R., Bagrov A.Y., Fedorova O.V., Shapiro J.I. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: Implication of epithelial-to-mesenchymal transition. Am. J. Physiol.-Ren. Physiol. 2009;296:F922–F934. doi: 10.1152/ajprenal.90605.2008.
    1. Fedorova O., Doris P., Bagrov A. Endogenous marinobufagenin-like factor in acute plasma volume expansion. Clin. Exp. Hypertens. 1998;20:581–591. doi: 10.3109/10641969809053236.
    1. Gallice P.M., Kovacic H.N., Brunet P.J., Berland Y.F., Crevat A.D. A non ouabain-like inhibitor of the sodium pump in uremic plasma ultrafiltrates and urine from healthy subjects. Clin. Chim. Acta. 1998;273:149–160. doi: 10.1016/S0009-8981(98)00032-1.
    1. Gonick H., Ding Y., Vaziri N., Bagrov A., Fedorova O. Simultaneous measurement of marinobufagenin, ouabain, and hypertension-associated protein in various disease states. Clin. Exp. Hypertens. 1998;20:617–627. doi: 10.3109/10641969809053240.
    1. Hamlyn J., Blaustein M., Bova S., DuCharme D., Harris D., Mandel F., Mathews W., Ludens J. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA. 1991;88:6259–6263. doi: 10.1073/pnas.88.14.6259.
    1. Hamlyn J.M., Ringel R., Schaeffer J., Levinson P.D., Hamilton B.P., Kowarski A.A., Blaustein M.P. A circulating inhibitor of (Na+ K+) ATPase associated with essential hypertension. Nature. 1982;300:650. doi: 10.1038/300650a0.
    1. Harwood S., Mullen A.M., McMahon A.C., Dawnay A. Plasma OLC is elevated in mild experimental uremia but is not associated with hypertension. Am. J. Hypertens. 2001;14:1112–1115. doi: 10.1016/S0895-7061(01)02219-1.
    1. Kennedy D.J., Vetteth S., Periyasamy S.M., Kanj M., Fedorova L., Khouri S., Kahaleh M.B., Xie Z., Malhotra D., Kolodkin N.I. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension. 2006;47:488–495. doi: 10.1161/01.HYP.0000202594.82271.92.
    1. Li S., Liu G., Jia J., Miao Y., Gu S., Miao P., Shi X., Wang Y., Yu C. Therapeutic monitoring of serum digoxin for patients with heart failure using a rapid LC-MS/MS method. Clin. Biochem. 2010;43:307–313. doi: 10.1016/j.clinbiochem.2009.09.025.
    1. Manunta P., Stella P., Rivera R., Ciurlino D., Cusi D., Ferrandi M., Hamlyn J.M., Bianchi G. Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension. 1999;34:450–456. doi: 10.1161/01.HYP.34.3.450.
    1. Periyasamy S.M., Chen J., Cooney D., Carter P., Omran E., Tian J., Priyadarshi S., Bagrov A., Fedorova O., Malhotra D. Effects of uremic serum on isolated cardiac myocyte calcium cycling and contractile function. Kidney Int. 2001;60:2367–2376. doi: 10.1046/j.1523-1755.2001.00053.x.
    1. Komiyama Y., Dong X.H., Nishimura N., Masaki H., Yoshika M., Masuda M., Takahashi H. A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clin. Biochem. 2005;38:36–45. doi: 10.1016/j.clinbiochem.2004.08.005.
    1. Pierdomenico S.D., Bucci A., Manunta P., Rivera R., Ferrandi M., Hamlyn J.M., Lapenna D., Cuccurullo F., Mezzetti A. Endogenous ouabain and hemodynamic and left ventricular geometric patterns in essential hypertension. Am. J. Hypertens. 2001;14:44–50. doi: 10.1016/S0895-7061(00)01225-5.
    1. Gottlieb S.S., Rogowski A.C., Weinberg M., Krichten C.M., Hamilton B.P., Hamlyn J.M. Elevated concentrations of endogenous ouabain in patients with congestive heart failure. Circulation. 1992;86:420–425. doi: 10.1161/01.CIR.86.2.420.
    1. Stella P., Manunta P., Mallamaci F., Melandri M., Spotti D., Tripepi G., Hamlyn J.M., Malatino L.S., Bianchi G., Zoccali C. Endogenous ouabain and cardiomyopathy in dialysis patients. J. Intern. Med. 2008;263:274–280. doi: 10.1111/j.1365-2796.2007.01883.x.
    1. Shimada K., Ishii N., Nambara T. Occurrence of bufadienolides in the skin of Bufo viridis Laur. Chem. Pharm. Bull. 1986;34:3454–3457. doi: 10.1248/cpb.34.3454.
    1. Chen K.K., Anderson R.C., Henderson F.G. Comparison of cardiac action of bufalin, cinobufotalin, and telocinobufagin with cinobufagin. Proc. Soc. Exp. Biol. Med. 1951;76:372–374. doi: 10.3181/00379727-76-18493.
    1. Touza N.A., Pocas E.S., Quintas L.E., Cunha-Filho G., Santos M.L., Noel F. Inhibitory effect of combinations of digoxin and endogenous cardiotonic steroids on Na+/K+-ATPase activity in human kidney membrane preparation. Life Sci. 2011;88:39–42. doi: 10.1016/j.lfs.2010.10.027.
    1. Kennedy D.J., Shrestha K., Sheehey B., Li X.S., Guggilam A., Wu Y., Finucan M., Gabi A., Medert C.M., Westfall K. Elevated plasma marinobufagenin, an endogenous cardiotonic steroid, is associated with right ventricular dysfunction and nitrative stress in heart failure. Circ. Heart Fail. 2015;8:1068. doi: 10.1161/CIRCHEARTFAILURE.114.001976.
    1. Tomaschitz A., Piecha G., Ritz E., Meinitzer A., Haas J., Pieske B., Wiecek A., Rus-Machan J., Toplak H., März W. Marinobufagenin in essential hypertension and primary aldosteronism: A cardiotonic steroid with clinical and diagnostic implications. Clin. Exp. Hypertens. 2015;37:108–115. doi: 10.3109/10641963.2014.913604.
    1. Hamlyn J.M., Blaustein M.P. Endogenous ouabain: Recent advances and controversies. Hypertension. 2016;68:526–532. doi: 10.1161/HYPERTENSIONAHA.116.06599.
    1. Kennedy D.J., Weber M.E., Guggilam A., Westfall K.M., Agatisa-Boyle B., Bucur P., Lingrel J.B., Tang W.W. Telecinobufagin, a novel cardiotonic steroid, promotes myocardial and renal fibrosis via Na/K-ATPase profibrotic signalling pathways. Circulation. 2014:130. doi: 10.1161/circ.130.suppl_2.17746.
    1. Sodhi K., Nichols A., Mallick A., Klug R.L., Liu J., Wang X., Srikanthan K., Goguet-Rubio P., Nawab A., Pratt R., et al. The Na/K-ATPase Oxidant Amplification Loop Regulates Aging. Sci. Rep. 2018;8:9721. doi: 10.1038/s41598-018-26768-9.
    1. Haller S.T., Drummond C.A., Yan Y., Liu J., Tian J., Malhotra D., Shapiro J.I. Passive immunization against marinobufagenin attenuates renal fibrosis and improves renal function in experimental renal disease. Am. J. Hypertens. 2013;27:603–609. doi: 10.1093/ajh/hpt169.
    1. Kennedy D.J., Chen Y., Huang W., Viterna J., Liu J., Westfall K., Tian J., Bartlett D.J., Tang W.W., Xie Z. CD36 and Na/K-ATPase-α1 form a proinflammatory signaling loop in kidney. Hypertension. 2013;61:216–224. doi: 10.1161/HYPERTENSIONAHA.112.198770.
    1. Lv W., Fan F., Wang Y., Gonzalez-Fernandez E., Wang C., Yang L., Booz G.W., Roman R.J. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol. Genom. 2017;50:20–34. doi: 10.1152/physiolgenomics.00039.2017.
    1. Lan H.Y., Nikolic-Paterson D.J. Advances in Mechanisms of Renal Fibrosis. Front. Physiol. 2018;9:284. doi: 10.3389/fphys.2018.00284.
    1. Tang P.M.K., Zhang Y.Y., Mak T.S.K., Tang P.C.T., Huang X.R., Lan H.Y. TGF-β signalling in renal fibrosis: From Smads to non-coding RNAs. J. Physiol. 2018 doi: 10.1113/JP274492.
    1. Chang Y., Lau W.L., Jo H., Tsujino K., Gewin L., Reed N.I., Atakilit A., Nunes A.C.F., DeGrado W.F., Sheppard D. Pharmacologic blockade of αvβ1 integrin ameliorates renal failure and fibrosis in vivo. J. Am. Soc. Nephrol. 2017;28:1998–2005. doi: 10.1681/ASN.2015050585.
    1. Tammaro A., Florquin S., Brok M., Claessen N., Butter L.M., Teske G.J., de Boer O.J., Vogl T., Leemans J.C., Dessing M.C. S100A8/A9 promotes parenchymal damage and renal fibrosis in obstructive nephropathy. Clin. Exp. Immunol. 2018 doi: 10.1111/cei.13154.
    1. Feng M., Tang P.M.-K., Huang X.-R., Sun S.-F., You Y.-K., Xiao J., Lv L.-L., Xu A.-P., Lan H.-Y. TGF-β Mediates Renal Fibrosis via the Smad3-Erbb4-IR Long Noncoding RNA Axis. Mol. Therapy. 2018;26:148–161. doi: 10.1016/j.ymthe.2017.09.024.
    1. Elkareh J., Kennedy D.J., Yashaswi B., Vetteth S., Shidyak A., Kim E.G., Smaili S., Periyasamy S.M., Hariri I.M., Fedorova L. Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension. 2007;49:215–224. doi: 10.1161/01.HYP.0000252409.36927.05.
    1. Cheng X., Song Y., Wang Y. pNaKtide ameliorates renal interstitial fibrosis through inhibition of sodium-potassium adenosine triphosphatase-mediated signaling pathways in unilateral ureteral obstruction mice. Nephrol. Dial. Transplant. 2018 doi: 10.1093/ndt/gfy107.
    1. Elkareh J., Periyasamy S.M., Shidyak A., Vetteth S., Schroeder J., Raju V., Hariri I.M., El-Okdi N., Gupta S., Fedorova L., et al. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: Implications for uremic cardiomyopathy. Am. J. Physiol. Ren. Physiol. 2009;296:F1219–F1226. doi: 10.1152/ajprenal.90710.2008.
    1. Fedorova O.V., Zernetkina V.I., Shilova V.Y., Grigorova Y.N., Juhasz O., Wei W., Marshall C.A., Lakatta E.G., Bagrov A.Y. Synthesis of an Endogenous Steroidal Na Pump Inhibitor Marinobufagenin, Implicated in Human Cardiovascular Diseases, Is Initiated by CYP27A1 via Bile Acid Pathway. Circ. Cardiovasc. Genet. 2015;8:736–745. doi: 10.1161/CIRCGENETICS.115.001217.
    1. Ishkaraeva-Yakovleva V.V., Fedorova O.V., Solodovnikova N.G., Frolova E.V., Bzhelyansky A.M., Emelianov I.V., Adair C.D., Zazerskaya I.E., Bagrov A.Y. DigiFab Interacts with Endogenous Cardiotonic Steroids and Reverses Preeclampsia-Induced Na/K.-ATPase Inhibition. Reprod Sci. 2012;19:1260–1267. doi: 10.1177/1933719112447124.
    1. Adair C.D., Buckalew V.M., Graves S.W., Lam G.K., Johnson D.D., Saade G., Lewis D.F., Robinson C., Danoff T.M., Chauhan N., et al. Digoxin immune fab treatment for severe preeclampsia. Am. J. Perinatol. 2010;27:655–662. doi: 10.1055/s-0030-1249762.
    1. Fedorova O.V., Tapilskaya N.I., Bzhelyansky A.M., Frolova E.V., Nikitina E.R., Reznik V.A., Kashkin V.A., Bagrov A.Y. Interaction of Digibind with endogenous cardiotonic steroids from preeclamptic placentae. J. Hypertens. 2010;28:361–366. doi: 10.1097/HJH.0b013e328333226c.
    1. Nikitina E.R., Mikhailov A.V., Nikandrova E.S., Frolova E.V., Fadeev A.V., Shman V.V., Shilova V.Y., Tapilskaya N.I., Shapiro J.I., Fedorova O.V., et al. In preeclampsia endogenous cardiotonic steroids induce vascular fibrosis and impair relaxation of umbilical arteries. J. Hypertens. 2011;29:769–776. doi: 10.1097/HJH.0b013e32834436a7.
    1. Grigorova Y.N., Juhasz O., Zernetkina V., Fishbein K.W., Lakatta E.G., Fedorova O.V., Bagrov A.Y. Aortic Fibrosis, Induced by High Salt Intake in the Absence of Hypertensive Response, is Reduced by a Monoclonal Antibody to Marinobufagenin. Am. J. Hypertens. 2016;29:641–646. doi: 10.1093/ajh/hpv155.
    1. Fedorova O.V., Emelianov I.V., Bagrov K.A., Grigorova Y.N., Wei W., Juhasz O., Frolova E.V., Marshall C.A., Lakatta E.G., Konradi A.O., et al. Marinobufagenin-induced vascular fibrosis is a likely target for mineralocorticoid antagonists. J. Hypertens. 2015;33:1602–1610. doi: 10.1097/HJH.0000000000000591.
    1. Haller S.T., Yan Y., Drummond C.A., Xie J., Tian J., Kennedy D.J., Shilova V.Y., Xie Z., Liu J., Cooper C.J. Rapamycin attenuates cardiac fibrosis in experimental uremic cardiomyopathy by reducing marinobufagenin levels and inhibiting downstream pro-fibrotic signaling. J. Am. Heart Assoc. 2016;5:e004106. doi: 10.1161/JAHA.116.004106.
    1. Drummond C.A., Hill M.C., Shi H., Fan X., Xie J.X., Haller S.T., Kennedy D.J., Liu J., Garrett M.R., Xie Z. Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts. Physiol. Genom. 2015;48:220–229. doi: 10.1152/physiolgenomics.00116.2015.
    1. Dostanic-Larson I., Lorenz J.N., Van Huysse J.W., Neumann J.C., Moseley A.E., Lingrel J.B. Physiological role of the α1-and α2-isoforms of the Na+-K+-ATPase and biological significance of their cardiac glycoside binding site. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006;290:R524–R528. doi: 10.1152/ajpregu.00838.2005.
    1. Cheung W.J., Kent M.-A.H., El-Shahat E., Wang H., Tan J., White R., Leenen F.H. Central and peripheral renin-angiotensin systems in ouabain-induced hypertension. Am. J. Physiol.-Heart Circ. Physiol. 2006;291:H624–H630. doi: 10.1152/ajpheart.01148.2005.
    1. Briones A.M., Xavier F.E., Arribas S.M., González M.C., Rossoni L.V., Alonso M.J., Salaices M. Alterations in structure and mechanics of resistance arteries from ouabain-induced hypertensive rats. Am. J. Physiol.-Heart Circ. Physiol. 2006;291:H193–H201. doi: 10.1152/ajpheart.00802.2005.
    1. Ferrandi M., Molinari I., Barassi P., Minotti E., Bianchi G., Ferrari P. Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J. Biol. Chem. 2004;279:33306–33314. doi: 10.1074/jbc.M402187200.
    1. Haller S.T., Kennedy D.J., Shidyak A., Budny G.V., Malhotra D., Fedorova O.V., Shapiro J.I., Bagrov A.Y. Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am. J. Hypertens. 2012;25:690–696. doi: 10.1038/ajh.2012.17.
    1. Schreiber V., Kölbel F., Štěpán J., Gregorova I., Přibyl T. Digoxin-like immunoreactivity in the serum of rats with cardiac overload. J. Mol. Cell. Cardiol. 1981;13:107–110. doi: 10.1016/0022-2828(81)90232-7.
    1. Morise T., Okamoto S., Takasaki H., Ikeda M., Takeda R., Kiuti F., Tuda Y. Biological Activity of Partially Purified Digitalis-like Substance and Na-K-ATPase Inhibitor in Rats: the 17th Conference on the Pathogenesis of Hypertension. Jpn. Circ. J. 1988;52:1309–1316. doi: 10.1253/jcj.52.1309.
    1. Leenen F.H., Yuan B., Huang B.S. Brain “ouabain” and angiotensin II contribute to cardiac dysfunction after myocardial infarction. Am. J. Physiol.-Heart Circ. Physiol. 1999;277:H1786–H1792. doi: 10.1152/ajpheart.1999.277.5.H1786.
    1. Orlov S.N., Klimanova E.A., Tverskoi A.M., Vladychenskaya E.A., Smolyaninova L.V., Lopina O.D. Na+ i, K+ i-Dependent and-Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules. 2017;22:635. doi: 10.3390/molecules22040635.
    1. La J., Reed E.B., Koltsova S., Akimova O., Hamanaka R.B., Mutlu G.M., Orlov S.N., Dulin N.O. Regulation of myofibroblast differentiation by cardiac glycosides. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2016;310:L815–L823. doi: 10.1152/ajplung.00322.2015.
    1. La J., Reed E., Chan L., Smolyaninova L.V., Akomova O.A., Mutlu G.M., Orlov S.N., Dulin N.O. Downregulation of TGF-β Receptor-2 Expression and Signaling through Inhibition of Na/K.-ATPase. PLoS ONE. 2016;11:e0168363. doi: 10.1371/journal.pone.0168363.
    1. Agunanne E., Horvat D., Harrison R., Uddin M.N., Jones R., Kuehl T.J., Ghanem D.A., Berghman L.R., Lai X., Li J., et al. Marinobufagenin levels in preeclamptic patients: A preliminary report. Am. J. Perinatol. 2011;28:509–514. doi: 10.1055/s-0031-1272965.
    1. Ehrig J.C., Afroze S.H., Reyes M., Allen S.R., Drever N.S., Pilkinton K.A., Kuehl T.J., Uddin M.N. A p38 mitogen-activated protein kinase inhibitor attenuates cardiotonic steroids-induced apoptotic and stress signaling in a Sw-71 cytotrophoblast cell line. Placenta. 2015;36:1276–1282. doi: 10.1016/j.placenta.2015.08.016.
    1. Ehrig J.C., Horvat D., Allen S.R., Jones R.O., Kuehl T.J., Uddin M.N. Cardiotonic steroids induce anti-angiogenic and anti-proliferative profiles in first trimester extravillous cytotrophoblast cells. Placenta. 2014;35:932–936. doi: 10.1016/j.placenta.2014.07.014.
    1. Uddin M.N., Horvat D., Demorrow S., Agunanne E., Puschett J.B. Marinobufagenin is an upstream modulator of Gadd45a stress signaling in preeclampsia. Biochim. Biophys. Acta. 2011;1812:49–58. doi: 10.1016/j.bbadis.2010.09.006.
    1. Uddin M.N., Horvat D., Childs E.W., Puschett J.B. Marinobufagenin causes endothelial cell monolayer hyperpermeability by altering apoptotic signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;296:R1726–R1734. doi: 10.1152/ajpregu.90963.2008.
    1. Lenaerts C., Bond L., Tuytten R., Blankert B. Revealing of endogenous Marinobufagin by an ultra-specific and sensitive UHPLC-MS/MS assay in pregnant women. Talanta. 2018;187:193–199. doi: 10.1016/j.talanta.2018.05.020.
    1. Koltsova S.V., Trushina Y., Haloui M., Akimova O.A., Tremblay J., Hamet P., Orlov S.N. Ubiquitous [Na+] i/[K+] i-sensitive transcriptome in mammalian cells: Evidence for Ca2+ i-independent excitation-transcription coupling. PLoS ONE. 2012;7:e38032. doi: 10.1371/journal.pone.0038032.
    1. Crujeiras A., Díaz-Lagares A., Carreira M., Amil M., Casanueva F. Oxidative stress associated to dysfunctional adipose tissue: A potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic. Res. 2013;47:243–256. doi: 10.3109/10715762.2013.772604.
    1. Everett B.M., Donath M.Y., Pradhan A.D., Thuren T., Pais P., Nicolau J.C., Glynn R.J., Libby P., Ridker P.M. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 2018;71:2392–2401. doi: 10.1016/j.jacc.2018.03.002.
    1. Lafontan M. Adipose tissue and adipocyte dysregulation. Diabetes Metab. 2014;40:16–28. doi: 10.1016/j.diabet.2013.08.002.
    1. Li M., Kim D.H., Tsenovoy P.L., Peterson S.J., Rezzani R., Rodella L.F., Aronow W.S., Ikehara S., Abraham N.G. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes. 2008;57:1526–1535. doi: 10.2337/db07-1764.
    1. Li Z., Cai T., Tian J., Xie J.X., Zhao X., Liu L., Shapiro J.I., Xie Z. NaKtide, a Na/K-ATPase-derived peptide Src inhibitor, antagonizes ouabain-activated signal transduction in cultured cells. J. Biol. Chem. 2009;284:21066–21076. doi: 10.1074/jbc.M109.013821.
    1. Martin R., Brickman C., Liu J., Sodhi K., Shapiro J.I. Abstract P203: PNaktide Targeted to Adipocytes Inhibits Na/k-atpase Reactive Oxygen Species, Systemic Inflammation, and Obesity Development in Mice Fed a Western Diet (WD) [(accessed on 24 August 2018)];2017 Available online: .
    1. Saltiel A.R., Olefsky J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017;127:1–4. doi: 10.1172/JCI92035.
    1. Shapiro M., Joseph I. Na/K-ATPase amplification of oxidant stress; a universal but unrecognized clinical target? Marshall J. Med. 2016;2:8.
    1. Sodhi K., Maxwell K., Yan Y., Liu J., Chaudhry M.A., Getty M., Xie Z., Abraham N.G., Shapiro J.I. pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis. Sci. Adv. 2015;1:e1500781. doi: 10.1126/sciadv.1500781.
    1. Sodhi K., Srikanthan K., Goguet-Rubio P., Nichols A., Mallick A., Nawab A., Martin R., Shah P.T., Chaudhry M., Sigdel S. pNaKtide Attenuates steatohepatitis and atherosclerosis by blocking Na/K-ATPase/ROS amplification in C57Bl6 and ApoE knockout mice fed a western diet. Sci. Rep. 2017;7:193. doi: 10.1038/s41598-017-00306-5.
    1. Turaihi K., Baron D., Dandona P. Increased leucocyte Na-K ATPase in obesity: Reversal following weight loss. Metabolism. 1987;36:851–855. doi: 10.1016/0026-0495(87)90093-X.
    1. Xia C., Rao X., Zhong J. Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J. Diabetes Res. 2017;2017 doi: 10.1155/2017/6494795.
    1. Zimmet P.Z. Diabetes and its drivers: The largest epidemic in human history? Clin. Diabetes Endocrinol. 2017;3:1. doi: 10.1186/s40842-016-0039-3.
    1. Vannella K.M., Wynn T.A. Mechanisms of organ injury and repair by macrophages. Annu. Rev. Physiol. 2017;79:593–617. doi: 10.1146/annurev-physiol-022516-034356.
    1. Manunta P., Maillard M., Tantardini C., Simonini M., Lanzani C., Citterio L., Stella P., Casamassima N., Burnier M., Hamlyn J.M. Relationships among endogenous ouabain, α-adducin polymorphisms and renal sodium handling in primary hypertension. J. Hypertens. 2008;26:914. doi: 10.1097/HJH.0b013e3282f5315f.
    1. Rossi G., Manunta P., Hamlyn J.M., Pavan E., De R.T., Semplicini A., Pessina A.C. Immunoreactive endogenous ouabain in primary aldosteronism and essential hypertension: Relationship with plasma renin, aldosterone and blood pressure levels. J. Hypertens. 1995;13:1181–1191. doi: 10.1097/00004872-199510000-00013.
    1. Fridman A.I., Matveev S.A., Agalakova N.I., Fedorova O.V., Lakatta E.G., Bagrov A.Y. Marinobufagenin, an endogenous ligand of alpha-1 sodium pump, is a marker of congestive heart failure severity. J. Hypertens. 2002;20:1189–1194. doi: 10.1097/00004872-200206000-00032.
    1. Straub R., Hall C., Krämer B., Elbracht R., Palitzsch K., Lang B., Schölmerich J. Atrial natriuretic factor and digoxin-like immunoreactive factor in diabetic patients: Their interrelation and the influence of the autonomic nervous system. J. Clin. Endocrinol. Metab. 1996;81:3385–3389.
    1. Gonçalves-de-Albuquerque C.F., Burth P., Silva A.R., de Moraes I.M.M., de Jesus Oliveira F.M., Santelli R.E., Freire A.S., de Lima G.S., da Silva E.D., da Silva C.I. Murine lung injury caused by Leptospira interrogans glycolipoprotein, a specific Na/K.-ATPase inhibitor. Respir. Res. 2014;15:93. doi: 10.1186/s12931-014-0093-2.
    1. Quastel M., Kaplan J. Inhibition by ouabain of human lymphocyte transformation induced by phytohaemagglutinin in vitro. Nature. 1968;219:198. doi: 10.1038/219198a0.
    1. Jensen P., Winger L., Rasmussen H., Nowell P. The mitogenic effect of A23187 in human peripheral lymphocytes. Biochim. Biophys. Acta (BBA) Gen. Subj. 1977;496:374–383. doi: 10.1016/0304-4165(77)90320-8.
    1. Dornand J., Favero J., Bonnafous J.-C., Mani J.-C. Mechanism whereby ouabain inhibits human T lymphocyte activation: Effect on the interleukin 2 pathway. Immunobiology. 1986;171:436–450.
    1. Brodie C., Tordai A., Saloga J., Domenico J., Gelfand E.W. Ouabain induces inhibition of the progression phase in human T-cell proliferation. J. Cell. Physiol. 1995;165:246–253. doi: 10.1002/jcp.1041650205.
    1. Khalaf F.K., Kleinhenz A.L., Crawford E.L., Tian J., Malhotra D., Haller S.T., Kennedy D.J. Cardiotonic Steroid Signaling through Na/K-ATPase-alpha-1 and Src Kinase Enhance Immune Cell Pro-Inflammatory Response. Circulation. 2017 doi: 10.1161/circ.136.suppl_1.17625.
    1. Numazawa S., Inoue N., Nakura H., Sugiyama T.-I., Fujino E., Shinoki M.-A., Yoshida T., Kuroiwa Y. A cardiotonic steroid bufalin-induced differentiation of THP-1 cells: Involvement of Na+, K+-ATPase inhibition in the early changes in proto-oncogene expression. Biochem.Pharmacol. 1996;52:321–329. doi: 10.1016/0006-2952(96)00210-9.
    1. Watabe M., Masuda Y., Nakajo S., Yoshida T., Kuroiwa Y., Nakaya K. The cooperative interaction of two different signaling pathways in response to bufalin induces apoptosis in human leukemia U937 cells. J. Biol. Chem. 1996;271:14067–14073. doi: 10.1074/jbc.271.24.14067.
    1. Kurosawa M., Numazawa S., Tani Y., Yoshida T. ERK signaling mediates the induction of inflammatory cytokines by bufalin in human monocytic cells. Am. J. Physiol.-Cell Physiol. 2000;278:C500–C508. doi: 10.1152/ajpcell.2000.278.3.C500.
    1. Watabe M., Ito K., Masuda Y., Nakajo S., Nakaya K. Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells. Oncogene. 1998;16:779. doi: 10.1038/sj.onc.1201592.
    1. Zhakeer Z., Hadeer M., Tuerxun Z., Tuerxun K. Bufalin inhibits the inflammatory effects in asthmatic mice through the suppression of nuclear factor-kappa B. activity. Pharmacology. 2017;99:179–187. doi: 10.1159/000450754.
    1. Bi Q.-R., Hou J.-J., Qi P., Ma C.-H., Shen Y., Feng R.-H., Yan B.-P., Wang J.-W., Shi X.-J., Zheng Y.-Y. Venenum Bufonis induces rat neuroinflammation by activiating NF-κB pathway and attenuation of BDNF. J. Ethnopharmacol. 2016;186:103–110. doi: 10.1016/j.jep.2016.03.049.
    1. Wang T., Xu P., Wang F., Zhou D., Wang R., Meng L., Wang X., Zhou M., Chen B., Ouyang J. Effects of digoxin on cell cycle, apoptosis and NF-κB pathway in Burkitt’s lymphoma cells and animal model. Leuk. Lymphoma. 2017;58:1673–1685. doi: 10.1080/10428194.2016.1256480.
    1. Zulian A., Linde C.I., Pulina M.V., Baryshnikov S.G., Papparella I., Hamlyn J.M., Golovina V.A. Activation of c-SRC underlies the differential effects of ouabain and digoxin on Ca2+ signaling in arterial smooth muscle cells. Am. J. Physiol. Cell Physiol. 2013;304:C324–C333. doi: 10.1152/ajpcell.00337.2012.
    1. Manunta P., Ferrandi M. Cardiac glycosides and cardiomyopathy. Hypertension. 2006;47:343–344. doi: 10.1161/01.HYP.0000202641.29167.c0.
    1. Kobayashi M., Usui-Kawanishi F., Karasawa T., Kimura H., Watanabe S., Mise N., Kayama F., Kasahara T., Hasebe N., Takahashi M. The cardiac glycoside ouabain activates NLRP3 inflammasomes and promotes cardiac inflammation and dysfunction. PLoS ONE. 2017;12:e0176676. doi: 10.1371/journal.pone.0176676.
    1. Liu J., Kennedy D.J., Yan Y., Shapiro J.I. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling. Int. J. Nephrol. 2012;2012:1–14. doi: 10.1155/2012/381320.
    1. Gregg E.W., Shaw J.E. Global health effects of overweight and obesity. N. Engl. J. Med. 2017;377:80–81. doi: 10.1056/NEJMe1706095.
    1. Pozza C., Isidori A.M. Imaging in Bariatric Surgery. Springer; Berlin, Germany: 2018. What’s Behind the Obesity Epidemic; pp. 1–8.
    1. Burgess A., Li M., Vanella L., Kim D.H., Rezzani R., Rodella L., Sodhi K., Canestraro M., Martasek P., Peterson S.J. Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension. 2010;56:1124–1130. doi: 10.1161/HYPERTENSIONAHA.110.151423.
    1. Iannello S., Milazzo P., Belfiore F. Animal and human tissue Na, K-ATPase in obesity and diabetes: A new proposed enzyme regulation. Am. J. Med. Sci. 2007;333:1–9. doi: 10.1097/00000441-200701000-00001.
    1. Chen Y., Kennedy D.J., Ramakrishnan D.P., Yang M., Huang W., Li Z., Xie Z., Chadwick A.C., Sahoo D., Silverstein R.L. Oxidized LDL-bound CD36 recruits an Na+/K+-ATPase-Lyn complex in macrophages that promotes atherosclerosis. Sci. Signal. 2015;8:ra91. doi: 10.1126/scisignal.aaa9623.
    1. Tian J., Xie Z.-J. The Na-K-ATPase and calcium-signaling microdomains. Physiology. 2008;23:205–211. doi: 10.1152/physiol.00008.2008.
    1. Xie J.X., Li X., Xie Z. Regulation of renal function and structure by the signaling Na/K-ATPase. IUBMB Life. 2013;65:991–998. doi: 10.1002/iub.1229.
    1. Endemann G., Stanton L., Madden K.S., Bryant C.M., White R.T., Protter A.A. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 1993;268:11811–11816.
    1. Okamura D.M., López-Guisa J.M., Koelsch K., Collins S., Eddy A.A. Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am. J. Physiol.-Ren. Physiol. 2007;293:F575–F585. doi: 10.1152/ajprenal.00063.2007.
    1. Apostolov E.O., Shah S.V., Ok E., Basnakian A.G. Quantification of carbamylated LDL in human sera by a new sandwich ELISA. Clin. Chem. 2005;51:719–728. doi: 10.1373/clinchem.2004.044032.
    1. Ok E., Basnakian A.G., Apostolov E.O., Barri Y.M., Shah S.V. Carbamylated low-density lipoprotein induces death ofendothelial cells: A link to atherosclerosis in patients with kidney disease. Kidney Int. 2005;68:173–178. doi: 10.1111/j.1523-1755.2005.00391.x.
    1. Van Kooten C., Banchereau J. CD40-CD40 ligand. J. Leukoc. Biol. 2000;67:2–17. doi: 10.1002/jlb.67.1.2.
    1. Gaweco A.S., Mitchell B.L., Lucas B.A., Mcclatchey K.D., Van Thiel D.H. CD40 expression on graft infiltrates and parenchymal CD154 (CD40L) induction in human chronic renal allograft rejection. Kidney Int. 1999;55:1543–1552. doi: 10.1046/j.1523-1755.1999.00379.x.
    1. Antoniades C., Bakogiannis C., Tousoulis D., Antonopoulos A.S., Stefanadis C. The CD40/CD40 ligand system: Linking inflammation with atherothrombosis. J. Am. Coll. Cardiol. 2009;54:669–677. doi: 10.1016/j.jacc.2009.03.076.
    1. Haller S.T., Kumarasamy S., Folt D.A., Wuescher L.M., Stepkowski S., Karamchandani M., Waghulde H., Mell B., Chaudhry M., Maxwell K. Targeted disruption of Cd40 in a genetically hypertensive rat model attenuates renal fibrosis and proteinuria, independent of blood pressure. Kidney Int. 2017;91:365–374. doi: 10.1016/j.kint.2016.08.015.
    1. Xie Z., Cai T. Na+-K+–ATPase-mediated signal transduction: From protein interaction to cellular function. Mol. Interv. 2003;3:157. doi: 10.1124/mi.3.3.157.

Source: PubMed

3
Abonner