Probiotics: Versatile Bioactive Components in Promoting Human Health

Javad Sharifi-Rad, Célia F Rodrigues, Zorica Stojanović-Radić, Marina Dimitrijević, Ana Aleksić, Katarzyna Neffe-Skocińska, Dorota Zielińska, Danuta Kołożyn-Krajewska, Bahare Salehi, Selvaraj Milton Prabu, Francine Schutz, Anca Oana Docea, Natália Martins, Daniela Calina, Javad Sharifi-Rad, Célia F Rodrigues, Zorica Stojanović-Radić, Marina Dimitrijević, Ana Aleksić, Katarzyna Neffe-Skocińska, Dorota Zielińska, Danuta Kołożyn-Krajewska, Bahare Salehi, Selvaraj Milton Prabu, Francine Schutz, Anca Oana Docea, Natália Martins, Daniela Calina

Abstract

The positive impact of probiotic strains on human health has become more evident than ever before. Often delivered through food, dietary products, supplements, and drugs, different legislations for safety and efficacy issues have been prepared. Furthermore, regulatory agencies have addressed various approaches toward these products, whether they authorize claims mentioning a disease's diagnosis, prevention, or treatment. Due to the diversity of bacteria and yeast strains, strict approaches have been designed to assess for side effects and post-market surveillance. One of the most essential delivery systems of probiotics is within food, due to the great beneficial health effects of this system compared to pharmaceutical products and also due to the increasing importance of food and nutrition. Modern lifestyle or various diseases lead to an imbalance of the intestinal flora. Nonetheless, as the amount of probiotic use needs accurate calculations, different factors should also be taken into consideration. One of the novelties of this review is the presentation of the beneficial effects of the administration of probiotics as a potential adjuvant therapy in COVID-19. Thus, this paper provides an integrative overview of different aspects of probiotics, from human health care applications to safety, quality, and control.

Keywords: clinical studies; evidence based-medicine; lifestyle; mechanisms; nutrition; probiotic properties; safety.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The new concept of “probiotic”. Abbreviations: Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO).
Figure 2
Figure 2
The most important beneficial properties of probiotics in promoting human health.
Figure 3
Figure 3
Summarized scheme of the benefits and risks of probiotics.

References

    1. Salehi B., Lopez-Jornet P., Pons-Fuster López E., Calina D., Sharifi-Rad M., Ramírez-Alarcón K., Forman K., Fernández M., Martorell M., Setzer W.N. Plant-derived bioactives in oral mucosal lesions: A key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties. Biomolecules. 2019;9:106. doi: 10.3390/biom9030106.
    1. Sharifi-Rad M., Kumar N.V.A., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Tsouh Fokou P.V., Azzini E., Peluso I., et al. Lifestyle, oxidative stress and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694.
    1. Salehi B., Ata A., Kumar N.V.A., Sharopov F., Ramírez-Alarcón K., Ruiz-Ortega A., Ayatollahi S.A., Fokou P.V.T., Kobarfard F., Zakaria Z.A., et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9:551. doi: 10.3390/biom9100551.
    1. Ayatollahi A.M., Ghanadian M., Afsharypuor S., Choudhary M.I., Kobarfard F., Rahmati M. Two new lathyrane type diterpenoids from Euphorbia aellenii. Fitoterapia. 2010;81:891–893. doi: 10.1016/j.fitote.2010.05.017.
    1. Choudhary M.I., Hussain A., Ali Z., Adhikari A., Sattar S.A., Ayatollahi S.A.M., Al-Majid A.M.A., Atta Ur R. Diterpenoids including a novel dimeric conjugate from Salvia leriaefolia. Planta Med. 2012;78:269–275. doi: 10.1055/s-0031-1280454.
    1. Ayatollahi A.M., Ghanadian M., Afsharypuor S., Mesaik M.A., Abdalla O.M., Shahlaei M., Farzandi G., Mostafavi H. Cycloartanes from Euphorbia aellenii Rech. f. and their Antiproliferative Activity. Iran. J. Pharm. Res. 2011;10:105–112.
    1. Neffe-Skocińska K., Rzepkowska A., Szydłowska A., Kołożyn-Krajewska D. Alternative and Replacement Foods. Elsevier; Amsterdam, The Netherlands: 2018. Trends and possibilities of the use of probiotics in food production; pp. 65–94.
    1. Russell W.R., Duncan S.H. Advanced analytical methodologies to study the microbial metabolome of the human gut. TrAC Trends Anal. Chem. 2013;52:54–60. doi: 10.1016/j.trac.2013.08.004.
    1. Tsoukalas D., Fragoulakis V., Sarandi E., Docea A.O., Papakonstantinou E., Tsilimidos G., Anamaterou C., Fragkiadaki P., Aschner M., Tsatsakis A. Targeted metabolomic analysis of serum fatty acids for the prediction of autoimmune diseases. Front. Mol. Biosci. 2019;6:120. doi: 10.3389/fmolb.2019.00120.
    1. Tsoukalas D., Fragkiadaki P., Docea A.O., Alegakis A.K., Sarandi E., Vakonaki E., Salataj E., Kouvidi E., Nikitovic D., Kovatsi L. Association of nutraceutical supplements with longer telomere length. Int. J. Mol. Med. 2019;44:218–226. doi: 10.3892/ijmm.2019.4191.
    1. Tsoukalas D., Fragkiadaki P., Docea A.O., Alegakis A.K., Sarandi E., Thanasoula M., Spandidos D.A., Tsatsakis A., Razgonova M.P., Calina D. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep. 2019;20:3701–3708. doi: 10.3892/mmr.2019.10614.
    1. Bagchi T. Traditional food & modern lifestyle: Impact of probiotics. Indian J. Med Res. 2014;140:333–335.
    1. Plaza-Diaz J., Ruiz-Ojeda F.J., Gil-Campos M., Gil A. Mechanisms of action of probiotics. Adv. Nutr. 2019;10:S49–S66. doi: 10.1093/advances/nmy063.
    1. Ceccarelli G., Scagnolari C., Pugliese F., Mastroianni C.M., d’Ettorre G. Probiotics and COVID-19. Lancet Gastroenterol. Hepatol. 2020;5:721–722. doi: 10.1016/S2468-1253(20)30196-5.
    1. D’Ettorre G., Ceccarelli G., Marazzato M., Campagna G., Pinacchio C., Alessandri F., Ruberto F., Rossi G., Celani L., Scagnolari C., et al. Challenges in the management of SARS-CoV2 infection: The Role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front. Med. (Lausanne) 2020;7:389. doi: 10.3389/fmed.2020.00389.
    1. Kerry R.G., Patra J.K., Gouda S., Park Y., Shin H.-S., Das G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018;26:927–939. doi: 10.1016/j.jfda.2018.01.002.
    1. Rivera-Espinoza Y., Gallardo-Navarro Y. Non-dairy probiotic products. Food Microbiol. 2010;27:1–11. doi: 10.1016/j.fm.2008.06.008.
    1. Cinque B., La Torre C., Melchiorre E., Marchesani G., Zoccali G., Palumbo P., Di Marzio L., Masci A., Mosca L., Mastromarino P. Probiotics. Springer; New York, NY, USA: 2011. Use of probiotics for dermal applications; pp. 221–241.
    1. Tripathi M., Giri S. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods. 2014;9:225–241. doi: 10.1016/j.jff.2014.04.030.
    1. FAO. WHO . Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. FAO; London, ON, Canada: WHO; London, ON, Canada: 2002. [(accessed on 24 December 2019)]. Available online:
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Peredo-Lovillo A., Romero-Luna H., Jiménez-Fernández M. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Res. Int. 2020;136:109473. doi: 10.1016/j.foodres.2020.109473.
    1. Wang S., Xiao Y., Tian F., Zhao J., Zhang H., Zhai Q., Chen W. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J. Funct. Foods. 2020;66:103838. doi: 10.1016/j.jff.2020.103838.
    1. Mustafa A.D., Kalyanasundram J., Sabidi S., Song A.A.-L., Abdullah M., Rahim R.A., Yusoff K. Recovery of recombinant Mycobacterium tuberculosis antigens fused with cell wall-anchoring motif (LysM) from inclusion bodies using non-denaturing reagent (N-laurylsarcosine) BMC Biotechnol. 2019;19:27. doi: 10.1186/s12896-019-0522-x.
    1. Pusceddu M.M., Murray K., Gareau M.G. Targeting the microbiota, from irritable bowel syndrome to mood disorders: Focus on probiotics and prebiotics. Curr. Pathobiol. Rep. 2018;6:1–13. doi: 10.1007/s40139-018-0160-3.
    1. Kechagia M., Basoulis D., Konstantopoulou S., Dimitriadi D., Gyftopoulou K., Skarmoutsou N., Fakiri E. Health benefits of probiotics: A review. ISRN Nutr. 2013;2013:481651. doi: 10.5402/2013/481651.
    1. Wilkins T., Sequoia J. Probiotics for gastrointestinal conditions: A summary of the evidence. Am. Fam. Physician. 2017;96:170–178.
    1. Islam S.U. Clinical uses of probiotics. Medicine. 2016;95:e2658. doi: 10.1097/MD.0000000000002658.
    1. Leung A.K., Leung A.A., Wong A.H., Hon K.L. Travelers’ diarrhea: A clinical review. Recent Pat. Inflamm. Allergy Drug Discov. 2019;13:38–48. doi: 10.2174/1872213X13666190514105054.
    1. Reid G., Jass J., Sebulsky M.T., McCormick J.K. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 2003;16:658–672. doi: 10.1128/CMR.16.4.658-672.2003.
    1. do Espírito Santo A.P., Perego P., Converti A., Oliveira M.N. Influence of food matrices on probiotic viability–A review focusing on the fruity bases. Trends Food Sci. Technol. 2011;22:377–385. doi: 10.1016/j.tifs.2011.04.008.
    1. Ołdak A., Zielińska D., Rzepkowska A., Kołożyn-Krajewska D. Comparison of antibacterial activity of Lactobacillus plantarum strains isolated from two different kinds of regional cheeses from Poland: Oscypek and Korycinski cheese. BioMed Res. Int. 2017;2017 doi: 10.1155/2017/6820369.
    1. Mantegazza C., Molinari P., D’Auria E., Sonnino M., Morelli L., Zuccotti G.V. Probiotics and antibiotic-associated diarrhea in children: A review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol. Res. 2018;128:63–72. doi: 10.1016/j.phrs.2017.08.001.
    1. Lee Y.K. What could probiotic do for us? Food Sci. Hum. Wellness. 2014;3:47–50. doi: 10.1016/j.fshw.2014.06.001.
    1. Benson A., Pifer R., Behrendt C.L., Hooper L.V., Yarovinsky F. Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe. 2009;6:187–196. doi: 10.1016/j.chom.2009.06.005.
    1. Nowak K., Śliżewska K., Libudzisz Z., Socha J. Probiotics–health effects. Żywność Nauka Technol. Jakość. 2010;4:20–36.
    1. Ungureanu A., Zlatian O., Mitroi G., Drocaş A., Ţîrcă T., Călina D., Dehelean C., Docea A.O., Izotov B.N., Rakitskii V.N. Staphylococcus aureus colonisation in patients from a primary regional hospital. Mol. Med. Rep. 2017;16:8771–8780. doi: 10.3892/mmr.2017.7746.
    1. Călina D., Roșu L., Roșu A.F., Ianoşi G., Ianoşi S., Zlatian O., Mitruț R., Docea A., Rogoveanu O., Mitruț P. Etiological diagnosis and pharmacotherapeutic management of parapneumonic pleurisy. Farmacia. 2016;64:946–952.
    1. Tanase A., Colita A., Ianosi G., Neagoe D., Branisteanu D.E., Calina D., Docea A.O., Tsatsakis A., Ianosi S.L. Rare case of disseminated fusariosis in a young patient with graft vs. host disease following an allogeneic transplant. Exp. Ther. Med. 2016;12:2078–2082. doi: 10.3892/etm.2016.3562.
    1. McFarland L., Evans C., Goldstein E. Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Front. Med. (Lausanne) 2018;5:124. doi: 10.3389/fmed.2018.00124.
    1. Lü M., Yu S., Deng J., Yan Q., Yang C., Xia G., Zhou X. Efficacy of probiotic supplementation therapy for Helicobacter pylori eradication: A meta-analysis of randomized controlled trials. PLoS ONE. 2016;11:e0163743. doi: 10.1371/journal.pone.0163743.
    1. Rosu A., Patita M., Calina D., Andreea N., Fonseca C. Multidrug resistant infections in cirrhosis patients. Filodiritto Editore; Proceedings of the Romanian National Congress of Pharmacy, 17th Edition; Bucharest, Romania. 26–29 September 2018.
    1. Jia K., Tong X., Wang R., Song X. The clinical effects of probiotics for inflammatory bowel disease: A meta-analysis. Medicine (Baltimore) 2018;97:e13792. doi: 10.1097/MD.0000000000013792.
    1. Cho S.J., Kim J.S., Kim J.M., Lee J.Y., Jung H.C., Song I.S. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. Int. J. Cancer. 2008;123:951–957. doi: 10.1002/ijc.23593.
    1. Li B., Liang L., Deng H., Guo J., Shu H., Zhang L. Efficacy and safety of probiotics in irritable bowel syndrome: A systematic review and meta-analysis. Front. Pharmacol. 2020;11:332. doi: 10.3389/fphar.2020.00332.
    1. Choi C.H., Chang S.K. Alteration of gut microbiota and efficacy of probiotics in functional constipation. J. Neurogastroenterol. Motil. 2015;21:4–7. doi: 10.5056/jnm14142.
    1. AlFaleh K., Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid. Based Child Health A Cochrane Rev. J. 2014;9:584–671. doi: 10.1002/ebch.1976.
    1. Docea A.O., Gofiță E., Călina D., Zaharie S., Valcea D.I., Mitruț P. Autoimmune disorders due to double antiviral therapy with Peginterferon and Ribavirin in patients with hepatitis C virus infection. Farmacia. 2016;64:605–611.
    1. Xie C., Halegoua-DeMarzio D. Role of probiotics in non-alcoholic fatty liver disease: Does gut microbiota matter? Nutrients. 2019;11:2837. doi: 10.3390/nu11112837.
    1. Shewry P.R., Hey S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015;4:178–202. doi: 10.1002/fes3.64.
    1. Scherf K.A. Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Curr. Opin. Food Sci. 2019;25:35–41. doi: 10.1016/j.cofs.2019.02.003.
    1. Akobeng A.K., Singh P., Kumar M., Al Khodor S. Role of the gut microbiota in the pathogenesis of coeliac disease and potential therapeutic implications. Eur. J. Nutr. 2020:1–22. doi: 10.1007/s00394-020-02324-y.
    1. Di Biase A.R., Marasco G., Ravaioli F., Dajti E., Colecchia L., Righi B., D’Amico V., Festi D., Iughetti L., Colecchia A. Gut microbiota signatures and clinical manifestations in celiac disease children at onset: A pilot study. J. Gastroenterol. Hepatol. 2020 doi: 10.1111/jgh.15183.
    1. Valitutti F., Cucchiara S., Fasano A. Celiac disease and the microbiome. Nutrients. 2019;11:2403. doi: 10.3390/nu11102403.
    1. Chibbar R., Dieleman L.A. The gut microbiota in celiac disease and probiotics. Nutrients. 2019;11:2375. doi: 10.3390/nu11102375.
    1. Galipeau H.J., McCarville J.L., Huebener S., Litwin O., Meisel M., Jabri B., Sanz Y., Murray J.A., Jordana M., Alaedini A., et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am. J. Pathol. 2015;185:2969–2982. doi: 10.1016/j.ajpath.2015.07.018.
    1. Henggeler J.C., Veríssimo M., Ramos F. Non-coeliac gluten sensitivity: A review of the literature. Trends Food Sci. Technol. 2017;66:84–92. doi: 10.1016/j.tifs.2017.05.018.
    1. Mahdavinia M. Food allergy in adults: Presentations, evaluation, and treatment. Med. Clin. 2020;104:145–155.
    1. Morais S., Tortajada-Genaro L.A., Maquieira A., Martinez M.-A.G. Biosensors for food allergy detection according to specific IgE levels in serum. TrAC Trends Anal. Chem. 2020;127:115904. doi: 10.1016/j.trac.2020.115904.
    1. Lee K.H., Song Y., Wu W., Yu K., Zhang G. The gut microbiota, environmental factors, and links to the development of food allergy. Clin. Mol. Allergy. 2020;18:1–11. doi: 10.1186/s12948-020-00120-x.
    1. Schülke S., Albrecht M. Mouse models for food allergies: Where do we stand? Cells. 2019;8:546. doi: 10.3390/cells8060546.
    1. Aitoro R., Paparo L., Amoroso A., Di Costanzo M., Cosenza L., Granata V., Di Scala C., Nocerino R., Trinchese G., Montella M., et al. Gut Microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients. 2017;9:672. doi: 10.3390/nu9070672.
    1. Stefka A.T., Feehley T., Tripathi P., Qiu J., McCoy K., Mazmanian S.K., Tjota M.Y., Seo G.-Y., Cao S., Theriault B.R. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. USA. 2014;111:13145–13150. doi: 10.1073/pnas.1412008111.
    1. Boynton W., Floch M. New strategies for the management of diverticular disease: Insights for the clinician. Ther. Adv. Gastroenterol. 2013;6:205–213. doi: 10.1177/1756283X13478679.
    1. Scarpignato C., Bertelé A., Tursi A. Probiotics for the Treatment of symptomatic uncomplicated diverticular disease: Rationale and current evidence. J. Clin. Gastroenterol. 2016;50(Suppl. 1):S70–S73. doi: 10.1097/MCG.0000000000000641.
    1. Lahner E., Bellisario C., Hassan C., Zullo A., Esposito G., Annibale B. Probiotics in the Treatment of diverticular disease: A systematic review. J. Gastrointestin. Liver Dis. 2016;25:79–86. doi: 10.15403/jgld.2014.1121.251.srw.
    1. Rondanelli M., Faliva M.A., Perna S., Giacosa A., Peroni G., Castellazzi A.M. Using probiotics in clinical practice: Where are we now? A review of existing meta-analyses. Gut Microbes. 2017;8:521–543. doi: 10.1080/19490976.2017.1345414.
    1. Bogdan M., Gofita E., Calina D.C., Turcu-Stiolica A., Docea A.O., Balseanu T.A., Camen A., Popa G.E., Rusu G., Cristofor I. Pharmacokinetics and Adverse Effects of Drugs-Mechanisms and Risks Factors. IntechOpen; Rijeka, Croatia: 2017. New antidepressant medication: Benefits versus adverse effects.
    1. Nussbaum L., Hogea L.M., Călina D., Andreescu N., Grădinaru R., Ștefănescu R., Puiu M. Modern treatment approaches in psychoses. Pharmacogenetic, neuroimagistic and clinical implications. Farmacia. 2017;65:75–81.
    1. Sharifi-Rad M., Lankatillake C., Dias D.A., Docea A.O., Mahomoodally M.F., Lobine D., Chazot P.L., Kurt B., Boyunegmez Tumer T., Catarina Moreira A. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J. Clin. Med. 2020;9:1061. doi: 10.3390/jcm9041061.
    1. Wallace C.J.K., Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry. 2017;16:14. doi: 10.1186/s12991-017-0138-2.
    1. Gayathri D., Rashmi B. Anti-cancer properties of probiotics: A natural strategy for cancer prevention. EC Nutr. 2016;5:1191–1202.
    1. Bozkurt H. Utilization of natural antioxidants: Green tea extract and Thymbra spicata oil in Turkish dry-fermented sausage. Meat Sci. 2006;73:442–450. doi: 10.1016/j.meatsci.2006.01.005.
    1. Honikel K.-O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008;78:68–76. doi: 10.1016/j.meatsci.2007.05.030.
    1. Eusebi L.H., Telese A., Marasco G., Bazzoli F., Zagari R.M. Gastric cancer prevention strategies: A global perspective. J. Gastroenterol. Hepatol. 2020 doi: 10.1111/jgh.15037.
    1. Neffe-Skocińska K., Okoń A., Kołożyn-Krajewska D., Dolatowski Z. Amino acid profile and sensory characteristics of dry fermented pork loins produced with a mixture of probiotic starter cultures. J. Sci. Food Agric. 2017;97:2953–2960. doi: 10.1002/jsfa.8133.
    1. Azad M., Kalam A., Sarker M., Wan D. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res. Int. 2018;2018:8063647. doi: 10.1155/2018/8063647.
    1. Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S.J., Berenjian A., Ghasemi Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8:92. doi: 10.3390/foods8030092.
    1. Rodrigues C.F., Rodrigues M.E., Henriques M.C. Promising alternative therapeutics for oral candidiasis. Curr. Med. Chem. 2019;26:2515–2528. doi: 10.2174/0929867325666180601102333.
    1. Sela D., Chapman J., Adeuya A., Kim J., Chen F., Whitehead T., Lapidus A., Rokhsar D., Lebrilla C.B., German J. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:18964–18969. doi: 10.1073/pnas.0809584105.
    1. Akelma A.Z., Topcu Z. Probiotics and allergic disease. World J. Immunol. 2016;6:75–82. doi: 10.5411/wji.v6.i1.75.
    1. Calina D., Docea A.O., Golokhvast K.S., Sifakis S., Tsatsakis A., Makrigiannakis A. Management of endocrinopathies in pregnancy: A review of current evidence. Int. J. Environ. Res. Public Health. 2019;16:781. doi: 10.3390/ijerph16050781.
    1. Song S., Lee S.-J., Park D.-J., Oh S., Lim K.-T. The anti-allergic activity of Lactobacillus plantarum L67 and its application to yogurt. J. Dairy Sci. 2016;99:9372–9382. doi: 10.3168/jds.2016-11809.
    1. Ganguli K., Collado M.C., Rautava J., Lu L., Satokari R., von Ossowski I., Reunanen J., de Vos W.M., Palva A., Isolauri E., et al. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatr. Res. 2015;77:528–535. doi: 10.1038/pr.2015.5.
    1. Llewellyn A., Foey A. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients. 2017;9:1156. doi: 10.3390/nu9101156.
    1. Rask C., Adlerberth I., Berggren A., Ahrén I.L., Wold A.E. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli. Clin. Exp. Immunol. 2013;172:321–332. doi: 10.1111/cei.12055.
    1. Vitetta L., Saltzman E.T., Thomsen M., Nikov T., Hall S. Adjuvant probiotics and the intestinal microbiome: Enhancing vaccines and immunotherapy outcomes. Vaccines. 2017;5:50. doi: 10.3390/vaccines5040050.
    1. Biswas G., Korenaga H., Nagamine R., Kawahara S., Takeda S., Kikuchi Y., Dashnyam B., Yoshida T., Kono T., Sakai M. Elevated cytokine responses to Vibrio harveyi infection in the Japanese pufferfish (Takifugu rubripes) treated with Lactobacillus paracasei spp. paracasei (06TCa22) isolated from the Mongolian dairy product. Fish Shellfish Immunol. 2013;35:756–765. doi: 10.1016/j.fsi.2013.06.004.
    1. Galdeano C.M., Cazorla S.I., Dumit J.M.L., Vélez E., Perdigón G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019;74:115–124.
    1. Docea A.O., Tsatsakis A., Albulescu D., Cristea O., Zlatian O., Vinceti M., Moschos S.A., Tsoukalas D., Goumenou M., Drakoulis N. A new threat from an old enemy: Re-emergence of coronavirus. Int. J. Mol. Med. 2020;45:1631–1643. doi: 10.3892/ijmm.2020.4555.
    1. Calina D., Docea A.O., Petrakis D., Egorov A.M., Ishmukhametov A.A., Gabibov A.G., Shtilman M.I., Kostoff R., Carvalho F., Vinceti M. Towards effective COVID-19 vaccines: Updates, perspectives and challenges. Int. J. Mol. Med. 2020;46:3–16. doi: 10.3892/ijmm.2020.4596.
    1. Islam M.T., Nasiruddin M., Khan I.N., Mishra S.K., Kudrat-E-Zahan M., Riaz T.A., Ali E.S., Rahman M.S., Mubarak M.S., Martorell M., et al. A perspective on emerging therapeutic interventions for COVID-19. Front. Public Health. 2020;8:281. doi: 10.3389/fpubh.2020.00281.
    1. Wojewodzic M.W. Bacteriophages could be a potential game changer in the trajectory of coronavirus disease (COVID-19) PHAGE. 2020;1:60–65. doi: 10.1089/phage.2020.0014.
    1. Dhar D., Mohanty A. Gut microbiota and Covid-19-possible link and implications. Virus Res. 2020;285:198018. doi: 10.1016/j.virusres.2020.198018.
    1. Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 2017;18:690–699. doi: 10.1038/nrg.2017.63.
    1. Infusino F., Marazzato M., Mancone M., Fedele F., Mastroianni C.M., Severino P., Ceccarelli G., Santinelli L., Cavarretta E., Marullo A.G.M., et al. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients. 2020;12:1718. doi: 10.3390/nu12061718.
    1. Liévin-Le Moal V., Servin A.L. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 2014;27:167–199. doi: 10.1128/CMR.00080-13.
    1. Kim Y.K., Shin C. The microbiota-gut-brain axis in neuropsychiatric disorders: Pathophysiological mechanisms and novel treatments. Curr. Neuropharmacol. 2018;16:559–573. doi: 10.2174/1570159X15666170915141036.
    1. Barzegari A., Kheyrolahzadeh K., Hosseiniyan Khatibi S.M., Sharifi S., Memar M.Y., Zununi Vahed S. The battle of probiotics and their derivatives against biofilms. Infect. Drug Resist. 2020;13:659–672. doi: 10.2147/IDR.S232982.
    1. Petrakis D., Margină D., Tsarouhas K., Tekos F., Stan M., Nikitovic D., Kouretas D., Spandidos D.A., Tsatsakis A. Obesity—A risk factor for increased COVID-19 prevalence, severity and lethality (Review) Mol. Med. Rep. 2020;22:9–19. doi: 10.3892/mmr.2020.11127.
    1. Sharifi-Rad J., Rodrigues C.F., Sharopov F., Docea A.O., Can Karaca A., Sharifi-Rad M., Kahveci Karıncaoglu D., Gülseren G., Şenol E., Demircan E. Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health. 2020;17:2326. doi: 10.3390/ijerph17072326.
    1. Tian Y., Xu B., Yu D., Ma Y., Wang Y., Jiang Y., Hu W., Tang C., Gao Y., Luo K. Ultrahard nanotwinned cubic boron nitride. Nature. 2013;493:385–388. doi: 10.1038/nature11728.
    1. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550.
    1. Trinchieri V., Laghi L., Vitali B., Parolin C., Giusti I., Capobianco D., Mastromarino P., De Simone C. Efficacy and safety of a multistrain probiotic formulation depends from manufacturing. Front. Immunol. 2017;8:1474. doi: 10.3389/fimmu.2017.01474.
    1. Timmerman H., Koning C., Mulder L., Rombouts F., Beynen A. Monostrain, multistrain and multispecies probiotics—A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004;96:219–233. doi: 10.1016/j.ijfoodmicro.2004.05.012.
    1. Conde-Islas A.Á., Jiménez-Fernández M., Cantú-Lozano D., Urrea-García G.R., Luna-Solano G. Effect of the freeze-drying process on the physicochemical and microbiological properties of mexican kefir grains. Processes. 2019;7:127. doi: 10.3390/pr7030127.
    1. De Simone C. The unregulated probiotic market. Clin. Gastroenterol. Hepatol. 2019;17:809–817. doi: 10.1016/j.cgh.2018.01.018.
    1. Cinque B., La Torre C., Lombardi F., Palumbo P., Evtoski Z., Santini S., Jr., Falone S., Cimini A., Amicarelli F., Cifone M.G. VSL# 3 probiotic differently influences IEC-6 intestinal epithelial cell status and function. J. Cell. Physiol. 2017;232:3530–3539.
    1. Gareau M.G., Sherman P.M., Walker W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2010;7:503–514. doi: 10.1038/nrgastro.2010.117.
    1. Shori A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016;13:1–8. doi: 10.1016/j.fbio.2015.11.001.
    1. Hu C., Wong F.S., Wen L. Type 1 diabetes and gut microbiota: Friend or foe? Pharmacol. Res. 2015;98:9–15. doi: 10.1016/j.phrs.2015.02.006.
    1. Iqbal M.Z., Qadir M.I., Hussain T., Janbaz K.H., Khan Y.H., Ahmad B. Probiotics and their beneficial effects against various diseases. Pak. J. Pharm. Sci. 2014;27:405–415.
    1. Barrett H.L., Callaway L.K., Nitert M.D. Probiotics: A potential role in the prevention of gestational diabetes? Acta Diabetol. 2012;49:1–13. doi: 10.1007/s00592-012-0444-8.
    1. Xu Y.-J. Foodomics: A novel approach for food microbiology. TrAC Trends Anal. Chem. 2017;96:14–21. doi: 10.1016/j.trac.2017.05.012.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Terpou A., Papadaki A., Lappa I.K., Kachrimanidou V., Bosnea L.A., Kopsahelis N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 2019;11:1591. doi: 10.3390/nu11071591.
    1. Mishra S., Mishra H. Technological aspects of probiotic functional food development. Nutrafoods. 2012;11:117–130. doi: 10.1007/s13749-012-0055-6.
    1. Botta C., Bertolino M., Zeppa G., Cocolin L. Evaluation of toma piemontese PDO cheese as a carrier of putative probiotics from table olive fermentations. J. Funct. Foods. 2015;18:106–116. doi: 10.1016/j.jff.2015.06.063.
    1. Sanders M.E., Klaenhammer T.R., Ouwehand A.C., Pot B., Johansen E., Heimbach J.T., Marco M.L., Tennilä J., Ross R.P., Franz C. Effects of genetic, processing, or product formulation changes on efficacy and safety of probiotics. Ann. N. Y. Acad. Sci. 2014;1309:1–18. doi: 10.1111/nyas.12363.
    1. Neffe K., Kolozyn-Krajewska D. Potential uses of probiotic bacteria in ripening meat products. Zywnosc Nauka Technol. Jakosc (Poland) 2010;17:167–177.
    1. Neffe-Skocinska K., Gierejkiewicz M., Kolozyn-Krajewska D. Optimization of fermentation conditions for dry-aged sirloins with probiotic bacteria added. Zywnosc Nauka Technol. Jakosc. 2011;18:36–46. doi: 10.15193/zntj/2011/79/036-046.
    1. Wójciak K., Dolatowski Z., Okoń A. The effect of probiotic strains on oxidative stability of cured pork meat products. Fleischwirtschaft. 2012;1:100–104.
    1. Yeo S.-K., Ewe J.-A., Tham C.S.-C., Liong M.-T. Probiotics. Springer; New York, NY, USA: 2011. Carriers of probiotic microorganisms; pp. 191–220.
    1. Kołożyn-Krajewska D., Dolatowski Z.J. Probiotic meat products and human nutrition. Process Biochem. 2012;47:1761–1772. doi: 10.1016/j.procbio.2012.09.017.
    1. Klingberg T.D., Axelsson L., Naterstad K., Elsser D., Budde B.B. Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. Int. J. Food Microbiol. 2005;105:419–431. doi: 10.1016/j.ijfoodmicro.2005.03.020.
    1. Erkkila S., Suihko M.L., Eerola S., Petaja E., Mattila-Sandholm T. Dry sausage fermented by Lactobacillus rhamnosus strains. Int. J. Food Microbiol. 2001;64:205–210. doi: 10.1016/S0168-1605(00)00457-8.
    1. Holko I., Hrabě J., Šalaková A., Rada V. The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis. Meat Sci. 2013;94:275–279. doi: 10.1016/j.meatsci.2013.03.005.
    1. Arihara K., Itoh M. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation. Int. J. Food Microbiol. 2000;56:227–230. doi: 10.1016/S0168-1605(99)00206-8.
    1. Muthukumarasamy P., Holley R.A. Survival of Escherichia coli O157: H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiol. 2007;24:82–88. doi: 10.1016/j.fm.2006.03.004.
    1. Toldrá F., Reig M. Innovations for healthier processed meats. Trends Food Sci. Technol. 2011;22:517–522. doi: 10.1016/j.tifs.2011.08.007.
    1. Kumar B.V., Vijayendra S.V.N., Reddy O.V.S. Trends in dairy and non-dairy probiotic products-a review. J. Food Sci. Technol. 2015;52:6112–6124. doi: 10.1007/s13197-015-1795-2.
    1. Ouwehand A.C., Kurvinen T., Rissanen P. Use of a probiotic Bifidobacterium in a dry food matrix, an in vivo study. Int. J. Food Microbiol. 2004;95:103–106. doi: 10.1016/j.ijfoodmicro.2004.03.015.
    1. Salehi B., Capanoglu E., Adrar N., Catalkaya G., Shaheen S., Jaffer M., Giri L., Suyal R., Jugran A.K., Calina D. Cucurbits plants: A key emphasis to its pharmacological potential. Molecules. 2019;24:1854. doi: 10.3390/molecules24101854.
    1. Salehi B., Sharifi-Rad J., Capanoglu E., Adrar N., Catalkaya G., Shaheen S., Jaffer M., Giri L., Suyal R., Jugran A.K. Cucurbita plants: From farm to industry. Appl. Sci. 2019;9:3387. doi: 10.3390/app9163387.
    1. Salehi B., Shivaprasad Shetty M., V Anil Kumar N., Živković J., Calina D., Oana Docea A., Emamzadeh-Yazdi S., Sibel Kılıç C., Goloshvili T., Nicola S. Veronica plants—Drifting from farm to traditional healing, food application, and phytopharmacology. Molecules. 2019;24:2454. doi: 10.3390/molecules24132454.
    1. Batista C., Barros L., Carvalho A.M., Ferreira I.C. Nutritional and nutraceutical potential of rape (Brassica napus L. var. napus) and “tronchuda” cabbage (Brassica oleraceae L. var. costata) inflorescences. Food Chem. Toxicol. 2011;49:1208–1214.
    1. Jaiswal A.K., Abu-Ghannam N. Kinetic studies for the preparation of probiotic cabbage juice: Impact on phytochemicals and bioactivity. Ind. Crops Prod. 2013;50:212–218. doi: 10.1016/j.indcrop.2013.07.028.
    1. Possemiers S., Marzorati M., Verstraete W., Van de Wiele T. Bacteria and chocolate: A successful combination for probiotic delivery. Int. J. Food Microbiol. 2010;141:97–103. doi: 10.1016/j.ijfoodmicro.2010.03.008.
    1. Venugopalan V., Shriner K.A., Wong-Beringer A. Regulatory oversight and safety of probiotic use. Emerg. Infect. Dis. 2010;16:1661–1665. doi: 10.3201/eid1611.100574.
    1. Hoffmann D.E., Fraser C., Palumbo F., Ravel F., Rowthorn J., Schwartz V. Final Report. Federal Regulation of Probiotics: An Analysis of the Existing Regulatory Framework and Recommendations for Alternative Frameworks. University Maryland Francis King Carey School of Law; Baltimore, MD, USA: 2016. [(accessed on 18 January 2020)]. White Paper. Available online: .
    1. Doron S., Snydman D.R. Risk and safety of probiotics. Clin. Infect. Dis. 2015;60:S129–S134. doi: 10.1093/cid/civ085.
    1. Whelan K., Myers C.E. Safety of probiotics in patients receiving nutritional support: A systematic review of case reports, randomized controlled trials, and nonrandomized trials. Am. J. Clin. Nutr. 2010;91:687–703. doi: 10.3945/ajcn.2009.28759.
    1. Bernardeau M., Guguen M., Vernoux J.P. Beneficial lactobacilli in food and feed: Long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev. 2006;30:487–513. doi: 10.1111/j.1574-6976.2006.00020.x.
    1. Sanders M.E., Akkermans L.M., Haller D., Hammerman C., Heimbach J.T., Hörmannsperger G., Huys G. Safety assessment of probiotics for human use. Gut Microbes. 2010;1:164–185. doi: 10.4161/gmic.1.3.12127.
    1. Munakata S., Arakawa C., Kohira R., Fujita Y., Fuchigami T., Mugishima H. A case of D-lactic acid encephalopathy associated with use of probiotics. Brain Dev. 2010;32:691–694. doi: 10.1016/j.braindev.2009.09.024.
    1. Ruseler-van Embden J., Van Lieshout L., Gosselink M., Marteau P. Inability of Lactobacillus casei strain GG, L. acidophilus, and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand. J. Gastroenterol. 1995;30:675–680. doi: 10.3109/00365529509096312.
    1. Ridlon J.M., Wolf P.G., Gaskins H.R. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201–215. doi: 10.1080/19490976.2016.1150414.
    1. Kumar M., Ghosh M., Ganguli A. Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World J. Microbiol. Biotechnol. 2012;28:703–711. doi: 10.1007/s11274-011-0866-4.
    1. O’Brien J., Crittenden R., Ouwehand A.C., Salminen S. Safety evaluation of probiotics. Trends Food Sci. Technol. 1999;10:418–424. doi: 10.1016/S0924-2244(00)00037-6.
    1. Cui Y., Hu T., Qu X., Zhang L., Ding Z., Dong A. Plasmids from food lactic acid bacteria: Diversity, similarity, and new developments. Int. J. Mol. Sci. 2015;16:13172–13202. doi: 10.3390/ijms160613172.
    1. Franz C.M., Huch M., Abriouel H., Holzapfel W., Gálvez A. Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 2011;151:125–140. doi: 10.1016/j.ijfoodmicro.2011.08.014.
    1. Sharma P., Tomar S.K., Goswami P., Sangwan V., Singh R. Antibiotic resistance among commercially available probiotics. Food Res. Int. 2014;57:176–195. doi: 10.1016/j.foodres.2014.01.025.
    1. Ammor M.S., Flórez A.B., Van Hoek A.H., Clara G., Aarts H.J., Margolles A., Mayo B. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J. Mol. Microbiol. Biotechnol. 2008;14:6–15. doi: 10.1159/000106077.
    1. Gueimonde M., Sanchez B., de los Reyes-Gavilan C.G., Margolles A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 2013;4:202.
    1. Tuomola E., Crittenden R., Playne M., Isolauri E., Salminen S. Quality assurance criteria for probiotic bacteria. Am. J. Clin. Nutr. 2001;73:393s–398s. doi: 10.1093/ajcn/73.2.393s.
    1. Georgieva M., Andonova L., Peikova L., Zlatkov A. Probiotics–Health benefits, classification, quality assurance and quality control–Review. Pharmacia. 2014;61:22–31.
    1. Huys G., Botteldoorn N., Delvigne F., De Vuyst L., Heyndrickx M., Pot B., Dubois J.J., Daube G. Microbial characterization of probiotics–Advisory report of the working group “8651 probiotics” of the Belgian superior health council (SHC) Mol. Nutr. Food Res. 2013;57:1479–1504. doi: 10.1002/mnfr.201300065.
    1. Mianzhi Y., Shah N.P. Contemporary nucleic acid-based molecular techniques for detection, identification, and characterization of Bifidobacterium. Crit. Rev. Food Sci. Nutr. 2017;57:987–1016. doi: 10.1080/10408398.2015.1023761.
    1. Holzapfel W.H., Haberer P., Geisen R., Björkroth J., Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 2001;73:365s–373s. doi: 10.1093/ajcn/73.2.365s.
    1. Chandok H., Shah P., Akare U.R., Hindala M., Bhadoriya S.S., Ravi G., Sharma V., Bandaru S., Rathore P., Nayarisseri A. Screening, isolation and identification of probiotic producing lactobacillus acidophilus strains EMBS081 & EMBS082 by 16S rRNA gene sequencing. Interdiscip. Sci. Comput. Life Sci. 2015;7:242–248.
    1. Shokryazdan P., Faseleh Jahromi M., Liang J.B., Ho Y.W. Probiotics: From isolation to application. J. Am. Coll. Nutr. 2017;36:666–676. doi: 10.1080/07315724.2017.1337529.
    1. Wosinska L., Cotter P.D., O’Sullivan O., Guinane C. The potential impact of probiotics on the gut microbiome of athletes. Nutrients. 2019;11:2270. doi: 10.3390/nu11102270.
    1. Ritchie M.L., Romanuk T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS ONE. 2012;7:e34938. doi: 10.1371/journal.pone.0034938.
    1. Da Silva T.F., Casarotti S.N., de Oliveira G.L.V., Penna A.L.B. The impact of probiotics, prebiotics, and synbiotics on the biochemical, clinical, and immunological markers, as well as on the gut microbiota of obese hosts. Crit. Rev. Food Sci. Nutr. 2020:1–19. doi: 10.1080/10408398.2020.1733483.
    1. Bron P.A., Kleerebezem M., Brummer R.J., Cani P.D., Mercenier A., MacDonald T.T., Garcia-Ródenas C.L., Wells J.M. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr. 2017;117:93–107. doi: 10.1017/S0007114516004037.
    1. Bogsan C.S.B., Ferreira L., Maldonado C., Perdigon G., Almeida S.R.d., Oliveira M.N.d. Fermented or unfermented milk using Bifidobacterium animalis subsp. lactis HN019: Technological approach determines the probiotic modulation of mucosal cellular immunity. Food Res. Int. 2014;64:283–288. doi: 10.1016/j.foodres.2014.05.036.
    1. Salehi B., Rescigno A., Dettori T., Calina D., Docea A.O., Singh L., Cebeci F., Özçelik B., Bhia M., Dowlati Beirami A. Avocado–soybean unsaponifiables: A panoply of potentialities to be exploited. Biomolecules. 2020;10:130. doi: 10.3390/biom10010130.
    1. Fenster K., Freeburg B., Hollard C., Wong C., Rønhave Laursen R., Ouwehand A.C. The Production and Delivery of probiotics: A review of a practical approach. Microorganisms. 2019;7:83. doi: 10.3390/microorganisms7030083.
    1. Ranadheera R., Baines S., Adams M. Importance of food in probiotic efficacy. Food Res. Int. 2010;43:1–7. doi: 10.1016/j.foodres.2009.09.009.
    1. Hempel S., Newberry S., Ruelaz A., Wang Z., Miles J.N., Suttorp M.J., Johnsen B., Shanman R., Slusser W., Fu N. Safety of probiotics used to reduce risk and prevent or treat disease. Evid. Rep. Technol. Assess. 2011;200:1–645.
    1. Marteau P. Safety aspects of probiotic products. Näringsforskning. 2001;45:22–24. doi: 10.3402/fnr.v45i0.1785.
    1. Govender M., Choonara Y.E., Kumar P., du Toit L.C., van Vuuren S., Pillay V. A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech. 2014;15:29–43. doi: 10.1208/s12249-013-0027-1.
    1. Celiberto L.S., Pinto R.A., Rossi E.A., Vallance B.A., Cavallini D.C.U. Isolation and Characterization of potentially probiotic bacterial strains from mice: Proof of concept for personalized probiotics. Nutrients. 2018;10:1684. doi: 10.3390/nu10111684.
    1. Salehi B., Calina D., Docea A.O., Koirala N., Aryal S., Lombardo D., Pasqua L., Taheri Y., Marina Salgado Castillo C., Martorell M. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases. J. Clin. Med. 2020;9:430. doi: 10.3390/jcm9020430.
    1. Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F.J., Queipo-Ortuño M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013;24:1415–1422. doi: 10.1016/j.jnutbio.2013.05.001.
    1. Sireswar S., Dey G., Sreesoundarya T., Sarkar D. Design of probiotic-fortified food matrices influence their antipathogenic potential. Food Biosci. 2017;20:28–35. doi: 10.1016/j.fbio.2017.08.002.
    1. Dueñas M., Muñoz-González I., Cueva C., Jiménez-Girón A., Sánchez-Patán F., Santos-Buelga C., Moreno-Arribas M., Bartolomé B. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Res. Int. 2015;2015:850902. doi: 10.1155/2015/850902.
    1. Conti-Silva A.C., de Souza-Borges P.K. Sensory characteristics, brand and probiotic claim on the overall liking of commercial probiotic fermented milks: Which one is more relevant? Food Res. Int. 2019;116:184–189. doi: 10.1016/j.foodres.2018.08.011.

Source: PubMed

3
Abonner