A prospective multicenter phase I/II clinical trial to evaluate safety and efficacy of NOVOCART Disc plus autologous disc chondrocyte transplantation in the treatment of nucleotomized and degenerative lumbar disc to avoid secondary disease: study protocol for a randomized controlled trial

Anja Tschugg, Felix Michnacs, Martin Strowitzki, Hans Jörg Meisel, Claudius Thomé, Anja Tschugg, Felix Michnacs, Martin Strowitzki, Hans Jörg Meisel, Claudius Thomé

Abstract

Background: Intervertebral disc degeneration is emphasized as an important cause of low back pain. Current surgical treatment provides relief to the accompanying pain and disability but does not restore the biological function of the intervertebral disc. NOVOCART™ Disc plus, an autologous cell compound for autologous disc chondrocyte transplantation, was developed to reduce the degenerative sequelae after lumbar disc surgery or to prophylactically avoid degeneration in adjacent discs.

Methods/design: This is a multicenter, randomized, controlled, clinical phase I/II combination study. A total of 120 adult patients are allocated in a ratio of 2:1:1. Sample size and power calculations were performed to detect the minimal clinically important difference of 10 units, with an expected standard deviation of 12 in the Oswestry Disability Index, which is the primary outcome parameter. Secondary outcome parameters include the visual analog scale and the EQ-5D questionnaire. Changes in physical and mental health are evaluated using the Short Form-12 (SF-12). Moreover, radiological and functional outcomes are evaluated. The major inclusion criterion is a single lumbar disc herniation that requires sequestrectomy. Transplantation is performed 90 days thereafter. Study data generation (study sites) and data storage, processing, and statistical analysis are clearly separated.

Discussion: In this phase-I/II study, NDplus is being investigated for its clinical applicability, safety, and efficacy in the repair of herniated, nucleotomized discs, and of adjacent degenerated discs, if present. To date, autologous disc chondrocytes have not been transplanted into degenerative discs without previous disc herniation. As such, this is the first study to investigate a therapeutic as well as a prophylactic approach to treat degenerative discs of the lumbar spine.

Trial registration: EudraCT No: 2010-023830-22, ID NCT01640457 , 8 November 2010.

Figures

Fig. 1
Fig. 1
Visit plan. In phase I, close monitoring of the safety parameters and an additional assessment of the magnetic resonance imaging (MRI) will occur
Fig. 2
Fig. 2
Transplantation. An injection needle is placed in the center of the disc space contra-laterally to the side of the disc surgery. In case of an adjacent disc disease, positioning of the needle takes place simultaneously to minimize radiation exposure
Fig. 3
Fig. 3
Randomization. Randomization is performed separately for phase I and phase II of the study

References

    1. Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354:581–5. doi: 10.1016/S0140-6736(99)01312-4.
    1. Siddiqui AH, Rafique MZ, Ahmad MN, Usman MU. Role of magnetic resonance imaging in lumbar spondylosis. J Coll Physicians Surg Pak. 2005;15:396–9.
    1. Förster M, Mahn F, Gockel U, Brosz M, Freynhagen R, Tölle TR, et al. Axial low back pain: one painful area--many perceptions and mechanisms. PLoS One. 2013;8:e68273. doi: 10.1371/journal.pone.0068273.
    1. Johnstone B, Bayliss MT. The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine (Phila Pa 1976) 1995;20:674–84. doi: 10.1097/00007632-199503150-00008.
    1. Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J. 2004;4:190S–4. doi: 10.1016/j.spinee.2004.07.007.
    1. Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine (Phila Pa 1976) 2010;35:S281–6. doi: 10.1097/BRS.0b013e3182022d32.
    1. Karikari IO, Isaacs RE. Minimally invasive transforaminal lumbar interbody fusion: a review of techniques and outcomes. Spine (Phila Pa 1976) 2010;35:S294–301. doi: 10.1097/BRS.0b013e3182022ddc.
    1. Ganey TM, Meisel HJ. A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation. Eur Spine J. 2002;11(Suppl 2):S206–14.
    1. Meisel HJ, Ganey T, Hutton WC, Libera J, Minkus Y, Alasevic O. Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J. 2006;15:397–405. doi: 10.1007/s00586-006-0169-x.
    1. Bertram H, Kroeber M, Wang H, Unglaub F, Guehring T, Carstens C, et al. Matrix-assisted cell transfer for intervertebral disc cell therapy. Biochem Biophys Res Commun. 2005;331:1185–92. doi: 10.1016/j.bbrc.2005.04.034.
    1. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine (Phila Pa 1976) 2000;25:2940–52. doi: 10.1097/00007632-200011150-00017.
    1. Davidson M, Keating JL. A comparison of five low back disability questionnaires: reliability and responsiveness. Phys Ther. 2002;82:8–24.
    1. Hurst NP, Jobanputra P, Hunter M, Lambert M, Lochhead A, Brown H. Validity of Euroqol--a generic health status instrument--in patients with rheumatoid arthritis. Economic and Health Outcomes Research Group. Br J Rheumatol. 1994;33:655–62. doi: 10.1093/rheumatology/33.7.655.
    1. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–83. doi: 10.1097/00005650-199206000-00002.
    1. Chapman CR. New directions in the understanding and management of pain. Soc Sci Med. 1984;19:1261–77. doi: 10.1016/0277-9536(84)90014-5.
    1. Thomé C, Barth M, Scharf J, Schmiedek P. Outcome after lumbar sequestrectomy compared with microdiscectomy: a prospective randomized study. J Neurosurg Spine. 2005;2:271–8. doi: 10.3171/spi.2005.2.3.0271.
    1. Eicker SO, Rhee S, Steiger HJ, Herdmann J, Floeth FW. Transtubular microsurgical approach to treating extraforaminal lumbar disc herniations. Neurosurg Focus. 2013;35:E1. doi: 10.3171/2013.4.FOCUS13126.
    1. Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, et al. Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine (Phila Pa 1976) 2002;27:1626–33. doi: 10.1097/00007632-200208010-00007.
    1. Ganey T, Libera J, Moos V, Alasevic O, Fritsch KG, Meisel HJ, et al. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine (Phila Pa 1976) 2003;28:2609–20. doi: 10.1097/01.BRS.0000097891.63063.78.
    1. Adkisson HD, Milliman C, Zhang X, Mauch K, Maziarz RT, Streeter PR. Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Res. 2010;4:57–68. doi: 10.1016/j.scr.2009.09.004.
    1. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006; CD005321;pub2.
    1. Greenberg DD, Stoker A, Kane S, Cockrell M, Cook JL. Biochemical effects of two different hyaluronic acid products in a co-culture model of osteoarthritis. Osteoarthritis Cartilage. 2006;14:814–22. doi: 10.1016/j.joca.2006.02.006.
    1. Karna E, Miltyk W, Surazyński A, Pałka JA. Protective effect of hyaluronic acid on interleukin-1-induced deregulation of beta1-integrin and insulin-like growth factor-I receptor signaling and collagen biosynthesis in cultured human chondrocytes. Mol Cell Biochem. 2008;308:57–64. doi: 10.1007/s11010-007-9612-5.
    1. Scholz B, Kinzelmann C, Benz K, Mollenhauer J, Wurst H, Schlosshauer B. Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. Eur Cell Mater. 2010;20:24–36.
    1. Comper WD, Zamparo O. Hydrodynamic properties of connective-tissue polysaccharides. Biochem J. 1990;269:561–4. doi: 10.1042/bj2690561.
    1. Inkinen RI, Lammi MJ, Agren U, Tammi R, Puustjärvi K, Tammi MI. Hyaluronan distribution in the human and canine intervertebral disc and cartilage endplate. Histochem J. 1999;31:579–87. doi: 10.1023/A:1003898923823.
    1. Anderson DG, Tannoury C. Molecular pathogenic factors in symptomatic disc degeneration. Spine J. 2005;5:260S–6. doi: 10.1016/j.spinee.2005.02.010.
    1. Feng H, Danfelter M, Strömqvist B, Heinegård D. Extracellular matrix in disc degeneration. J Bone Joint Surg Am. 2006;88(Suppl 2):25–9. doi: 10.2106/JBJS.E.01341.
    1. Wilke HJ, Heuer F, Neidlinger-Wilke C, Claes L. Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model? Eur Spine J. 2006;15(Suppl 3):S433–8. doi: 10.1007/s00586-006-0177-x.
    1. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873–8. doi: 10.1097/00007632-200109010-00011.
    1. Pfirrmann CW, Dora C, Schmid MR, Zanetti M, Hodler J, Boos N. MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology. 2004;230:583–8. doi: 10.1148/radiol.2302021289.
    1. Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology. 2007;245:43–61. doi: 10.1148/radiol.2451051706.

Source: PubMed

3
Abonner