Anorexia nervosa is linked to reduced brain structure in reward and somatosensory regions: a meta-analysis of VBM studies

Olga E Titova, Olof C Hjorth, Helgi B Schiöth, Samantha J Brooks, Olga E Titova, Olof C Hjorth, Helgi B Schiöth, Samantha J Brooks

Abstract

Background: Structural imaging studies demonstrate brain tissue abnormalities in eating disorders, yet a quantitative analysis has not been done.

Methods: In global and regional meta-analyses of 9 voxel-based morphometry (VBM) studies, with a total of 228 eating disorder participants (currently ill with anorexia nervosa), and 240 age-matched healthy controls, we compare brain volumes using global and regional analyses.

Results: Anorexia nervosa (AN) patients have global reductions in gray (effect size = -0.66) and white matter (effect size = -0.74) and increased cerebrospinal fluid (effect size = 0.98) and have regional decreases in left hypothalamus, left inferior parietal lobe, right lentiform nucleus and right caudate, and no significant increases. No significant difference in hemispheric lateralization was found.

Conclusions: Global and regional meta-analyses suggest that excessive restrained eating as found in those with anorexia nervosa coincides with structural brain changes analogous to clinical symptoms.

Figures

Figure 1
Figure 1
Difference in GM volume between anorexia nervosa and control group. Forest plot depicting the difference in global grey matter volume between patients with AN and healthy controls. Authors of study are given on left, red line indicates median, blue boxes indicate separate studies; p value = statistical significance threshold; weight % as adjusted for study population size; CI = confidence intervals.
Figure 2
Figure 2
Difference in WM volume between anorexia nervosa and control group. Forest plot depicting the difference in global white matter volume between patients with AN and healthy controls. Authors of study are given on left, red line indicates median, blue boxes indicate separate studies; p value = statistical significance threshold; weight % as adjusted for study population size; CI = confidence intervals.
Figure 3
Figure 3
Difference in CSF volume between anorexia nervosa and control group. Forest plot depicting the difference in global cerebrospinal fluid volume between patients with AN and healthy controls. Authors of study are given on left, red line indicates median, blue boxes indicate separate studies; p value = statistical significance threshold; weight % as adjusted for study population size; CI = confidence intervals.
Figure 4
Figure 4
Activation likelihood estimation of reduced regional brain volumes. Showing clusters with significant ALE maxima (p < 0.05 for multiple comparisons, cluster size >100 mm3), Talairach coordinates are given for the respective slices. ALE clusters for the contrast AN < HC: (A) Hypothalamus; (B) L Inferior Parietal lobe. Brodmann area 39, (C) R Lentiform nucleus, (D) R Caudate.
Figure 5
Figure 5
Average T-Values across studies showing gray matter reduction in anorexia nervosa. T value intensity of VBM studies showing regional gray matter decrease in people with anorexia nervosa and healthy controls.
Figure 6
Figure 6
Number of studies demonstrating regional gray matter change in people with anorexia nervosa and healthy controls.
Figure 7
Figure 7
Regional grey matter change in people with anorexia nervosa in left and right hemispheres.

References

    1. Brooks S, Prince A, Stahl D, Campbell IC, Treasure J. A systematic review and meta-analysis of cognitive bias to food stimuli in people with disordered eating behaviour. Clin Psychol Rev. 2011;31(1):37–51. doi: 10.1016/j.cpr.2010.09.006.
    1. Chui HT, Christensen BK, Zipursky RB, Richards BA, Hanratty MK, Kabani NJ, Mikulis DJ, Katzman DK. Cognitive function and brain structure in females with a history of adolescent-onset anorexia nervosa. Pediatrics. 2008;122(2):e426–e437. doi: 10.1542/peds.2008-0170.
    1. Joos A, Kloppel S, Hartmann A, Glauche V, Tuscher O, Perlov E, Saum B, Freyer T, Zeeck A, van Elst Tebartz L. Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatry Res. 2010;182(2):146–151. doi: 10.1016/j.pscychresns.2010.02.004.
    1. Boghi A, Sterpone S, Sales S, D’Agata F, Bradac GB, Zullo G, Munno D. In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res. 2011;192(3):154–159. doi: 10.1016/j.pscychresns.2010.12.008.
    1. Gaudio S, Nocchi F, Franchin T, Genovese E, Cannata V, Longo D, Fariello G. Gray matter decrease distribution in the early stages of Anorexia Nervosa restrictive type in adolescents. Psychiatry Res. 2011;191(1):24–30. doi: 10.1016/j.pscychresns.2010.06.007.
    1. Wagner A, Greer P, Bailer UF, Frank GK, Henry SE, Putnam K, Meltzer CC, Ziolko SK, Hoge J, McConaha C. Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa. Biol Psychiatry. 2006;59(3):291–293. doi: 10.1016/j.biopsych.2005.06.014.
    1. Joos A, Hartmann A, Glauche V, Perlov E, Unterbrink T, Saum B, Tuscher O, van Elst Tebartz L, Zeeck A. Grey matter deficit in long-term recovered anorexia nervosa patients. Eur Eat Disord Rev. 2011;19(1):59–63. doi: 10.1002/erv.1060.
    1. Lambe EK, Katzman DK, Mikulis DJ, Kennedy SH, Zipursky RB. Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Arch Gen Psychiatry. 1997;54(6):537–542. doi: 10.1001/archpsyc.1997.01830180055006.
    1. Katzman DK, Christensen B, Young AR, Zipursky RB. Starving the brain: structural abnormalities and cognitive impairment in adolescents with anorexia nervosa. Semin Clin Neuropsychiatry. 2001;6(2):146–152. doi: 10.1053/scnp.2001.22263.
    1. Golden NH, Ashtari M, Kohn MR, Patel M, Jacobson MS, Fletcher A, Shenker IR. Reversibility of cerebral ventricular enlargement in anorexia nervosa, demonstrated by quantitative magnetic resonance imaging. J Pediatr. 1996;128(2):296–301. doi: 10.1016/S0022-3476(96)70414-6.
    1. Katzman DK, Zipursky RB. Adolescents with anorexia nervosa: the impact of the disorder on bones and brains. Ann N Y Acad Sci. 1997;817:127–137. doi: 10.1111/j.1749-6632.1997.tb48202.x.
    1. Katzman DK, Zipursky RB, Lambe EK, Mikulis DJ. A longitudinal magnetic resonance imaging study of brain changes in adolescents with anorexia nervosa. Arch Pediatr Adolesc Med. 1997;151(8):793–797. doi: 10.1001/archpedi.1997.02170450043006.
    1. Kerem NC, Katzman DK. Brain structure and function in adolescents with anorexia nervosa. Adolesc Med. 2003;14(1):109–118.
    1. Kingston K, Szmukler G, Andrewes D, Tress B, Desmond P. Neuropsychological and structural brain changes in anorexia nervosa before and after refeeding. Psychol Med. 1996;26(1):15–28. doi: 10.1017/S0033291700033687.
    1. Kohn MR, Ashtari M, Golden NH, Schebendach J, Patel M, Jacobson MS, Shenker IR. Structural brain changes and malnutrition in anorexia nervosa. Ann N Y Acad Sci. 1997;817:398–399. doi: 10.1111/j.1749-6632.1997.tb48238.x.
    1. Swayze VW 2nd, Andersen AE, Andreasen NC, Arndt S, Sato Y, Ziebell S. Brain tissue volume segmentation in patients with anorexia nervosa before and after weight normalization. Int J Eat Disord. 2003;33(1):33–44. doi: 10.1002/eat.10111.
    1. McCormick LM, Keel PK, Brumm MC, Bowers W, Swayze V, Andersen A, Andreasen N. Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa. Int J Eat Disord. 2008;41(7):602–610. doi: 10.1002/eat.20549.
    1. Giordano GD, Renzetti P, Parodi RC, Foppiani L, Zandrino F, Giordano G, Sardanelli F. Volume measurement with magnetic resonance imaging of hippocampus-amygdala formation in patients with anorexia nervosa. J Endocrinol Invest. 2001;24(7):510–514.
    1. Connan F, Murphy F, Connor SE, Rich P, Murphy T, Bara-Carill N, Landau S, Krljes S, Ng V, Williams S. Hippocampal volume and cognitive function in anorexia nervosa. Psychiatry Res. 2006;146(2):117–125. doi: 10.1016/j.pscychresns.2005.10.006.
    1. Ashburner J, Friston KJ. Voxel-based morphometry–the methods. NeuroImage. 2000;11(6 Pt 1):805–821.
    1. Van den Eynde F, Suda M, Broadbent H, Guillaume S, Van den Eynde M, Steiger H, Israel M, Berlim M, Giampietro V, Simmons A. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eat Disord Rev. 2012;20(2):94–105. doi: 10.1002/erv.1163.
    1. American Psychiatric Association. Diagnostic and Statistical Manual of mental disorders. 4, Text Review. Washington DC; 2000.
    1. Suda M, Narita K, Takei Y, Aoyama Y, Takahashi K, Yuki N, Uehara T, Fukuda M, Mikuni M. Changes in gray matter volume with rapid body weight changes in anorexia nervosa: a voxel-based morphometric study. Biol Psychiatry. 2011;70(8):e35–e36. doi: 10.1016/j.biopsych.2011.03.034.
    1. Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT. ALE meta-analysis workflows Via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform. 2009;3:23.
    1. van der Laan LN, de Ridder DT, Viergever MA, Smeets PA. The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. NeuroImage. 2011;55(1):296–303. doi: 10.1016/j.neuroimage.2010.11.055.
    1. Suchan B, Busch M, Schulte D, Gronemeyer D, Herpertz S, Vocks S. Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res. 2010;206(1):63–67. doi: 10.1016/j.bbr.2009.08.035.
    1. Castro-Fornieles J, Bargallo N, Lazaro L, Andres S, Falcon C, Plana MT, Junque C. A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. J Psychiatr Res. 2009;43(3):331–340. doi: 10.1016/j.jpsychires.2008.03.013.
    1. Roberto CA, Mayer LE, Brickman AM, Barnes A, Muraskin J, Yeung LK, Steffener J, Sy M, Hirsch J, Stern Y. Brain tissue volume changes following weight gain in adults with anorexia nervosa. Int J Eat Disord. 2011;44(5):406–411. doi: 10.1002/eat.20840.
    1. Friederich HC, Walther S, Bendszus M, Biller A, Thomann P, Zeigermann S, Katus T, Brunner R, Zastrow A, Herzog W. Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. NeuroImage. 2012;59(2):1106–1113. doi: 10.1016/j.neuroimage.2011.09.042.
    1. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. NeuroImage. 2011;59(3):2349–2361. doi: 10.1016/j.neuroimage.2011.09.017.
    1. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp. 2005;25(1):155–164. doi: 10.1002/hbm.20136.
    1. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage. 2002;16(3 Pt 1):765–780.
    1. Brooks SJ, Barker GJ, O’Daly OG, Brammer M, Williams SC, Benedict C, Schioth HB, Treasure J, Campbell IC. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study. BMC Psychiatry. 2011;11(1):179. doi: 10.1186/1471-244X-11-179.
    1. Uher R, Rutter M. Classification of feeding and eating disorders: review of evidence and proposals for ICD-11. World Psychiatry. 2012;11(2):80–92. doi: 10.1016/j.wpsyc.2012.05.005.
    1. Brooks SJ, Rask-Andersen M, Benedict C, Schiöth HB. A debate on current eating disorder diagnoses in light of neurobiological findings: is it time for a spectrum model? BMC Psychiatry. 2012. in press.
    1. Mainz V, Schulte-Ruther M, Fink GR, Herpertz-Dahlmann B, Konrad K. Structural brain abnormalities in adolescent anorexia nervosa before and after weight recovery and associated hormonal changes. Psychosom Med. 2012;74(6):574–582. doi: 10.1097/PSY.0b013e31824ef10e.

Source: PubMed

3
Abonner