Novel Polyfermentor intestinal model (PolyFermS) for controlled ecological studies: validation and effect of pH

Annina Zihler Berner, Susana Fuentes, Alexandra Dostal, Amanda N Payne, Pamela Vazquez Gutierrez, Christophe Chassard, Franck Grattepanche, Willem M de Vos, Christophe Lacroix, Annina Zihler Berner, Susana Fuentes, Alexandra Dostal, Amanda N Payne, Pamela Vazquez Gutierrez, Christophe Chassard, Franck Grattepanche, Willem M de Vos, Christophe Lacroix

Abstract

In vitro gut fermentation modeling offers a useful platform for ecological studies of the intestinal microbiota. In this study we describe a novel Polyfermentor Intestinal Model (PolyFermS) designed to compare the effects of different treatments on the same complex gut microbiota. The model operated in conditions of the proximal colon is composed of a first reactor containing fecal microbiota immobilized in gel beads, and used to continuously inoculate a set of parallel second-stage reactors. The PolyFermS model was validated with three independent intestinal fermentations conducted for 38 days with immobilized human fecal microbiota obtained from three child donors. The microbial diversity of reactor effluents was compared to donor feces using the HITChip, a high-density phylogenetic microarray targeting small subunit rRNA sequences of over 1100 phylotypes of the human gastrointestinal tract. Furthermore, the metabolic response to a decrease of pH from 5.7 to 5.5, applied to balance the high fermentative activity in inoculum reactors, was studied. We observed a reproducible development of stable intestinal communities representing major taxonomic bacterial groups at ratios similar to these in feces of healthy donors, a high similarity of microbiota composition produced in second-stage reactors within a model, and a high time stability of microbiota composition and metabolic activity over 38 day culture. For all tested models, the pH-drop of 0.2 units in inoculum reactors enhanced butyrate production at the expense of acetate, but was accompanied by a donor-specific reorganization of the reactor community, suggesting a concerted metabolic adaptation and trigger of community-specific lactate or acetate cross-feeding pathways in response to varying pH. Our data showed that the PolyFermS model allows the stable cultivation of complex intestinal microbiota akin to the fecal donor and can be developed for the direct comparison of different experimental conditions in parallel reactors continuously inoculated with the exact same microbiota.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist. The name of the PolyFermS has been registered at INPI (Institut National de la propriété industrielle, France) for identification of the system. ETH Zurich is the deponent. There are no patents or commercial interests.

Figures

Figure 1. Setup and design of the…
Figure 1. Setup and design of the Polyfermentor Intestinal Model (PolyFermS).
Control (CR) and test reactors (TR) were continuously inoculated with effluents from inoculum reactors (IR) containing 30% (v/v) of fecal beads from donors A (model A), B (model B) and C (model C), respectively. Metabolites were quantified daily by HPLC analysis. Community structure was studied by HITChip analyses at selected time points t1, t2, t3 and t4. RT, mean retention time.
Figure 2. Composition of intestinal microbiota produced…
Figure 2. Composition of intestinal microbiota produced in effluents of PolyFermS models.
A. Similarity to the fecal donor. Open circles and straight lines correspond to single and mean similarity indices, respectively, based on Pearson product-moment correlation coefficients for HITChip fingerprints generated from fecal donor samples and PolyFermS model reactor effluents obtained from model A, B and C at time points t1 and t2 from all reactors and at t3 and t4 from IR and CR. B. Temporal diversity development. Open circles and lines correspond to single and mean Simpson’s reciprocal indices of diversity, respectively, calculated for effluent samples obtained from model A, B and C at time points t1 and t2 from all reactors and at t3 and t4 from IR and CR. Dashed lines indicate the Simpson’s reciprocal index of the corresponding fecal donor sample. A higher Simpson’s reciprocal index reflects a more diverse community, e.g. in terms of species richness and evenness.
Figure 3. Correlation between butyrate production and…
Figure 3. Correlation between butyrate production and the fraction of predominant butyrate-producing bacteria in the total microbiota produced in effluents of PolyFermS models.
Open circles visualize the mean relative abundance (% of total flora) of predominant butyrate-producing bacteria (Faecalibacterium prausnitzii, Eubacterium rectale, Roseburia spp.) in IR, CR and TR of model A, B and C and colored bars indicate mean model-specific molar metabolite ratios (%) of acetate (in red), propionate (in green) and butyrate (in blue), with IR pH at 5.7 (t1) and 5.5 (t2).
Figure 4. Intra-model reproducibility of metabolic balance…
Figure 4. Intra-model reproducibility of metabolic balance measured in effluent samples of PolyFermS models.
Molar metabolite ratios (%) measured daily in control reactors (CRA, CRB and CRB; x-axis) and test reactors (TRA, TRB and TRC; y-axis) from day 6 to 22. Mean daily ratios were calculated for TR1A, TR2A, TR3A (TRA). Numbers in color indicate model-specific Pearson correlation coefficients calculated for acetate (in red), propionate (in green) and butyrate (in blue).
Figure 5. Time stability of intestinal microbiota…
Figure 5. Time stability of intestinal microbiota produced in effluents of PolyFermS models.
Single (open circles) and mean (line) similarity indices are based on Pearson product-moment correlation coefficients for HITChip fingerprints generated from PolyFermS reactor effluents obtained from model A, B and C at time points t1 and t2 from all reactors and at t3 and t4 from IR and CR compared to corresponding previous time points.

References

    1. Xu J, Gordon JI (2003) Inaugural Article: Honor thy symbionts. Proc Natl Acad Sci U S A 100: 10452–10459.
    1. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24: 4–10.
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
    1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180.
    1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915–1920.
    1. Cummings JH, Macfarlane GT (1997) Colonic microflora: nutrition and health. Nutrition 13: 476–478.
    1. Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30: 17–25.
    1. Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H (2009) Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2: 9–22.
    1. Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, et al. (2008) In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe 14: 280–286.
    1. Gumienna M, Lasik M, Czarnecki Z (2011) Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. Int J Food Sci Nutr 62: 226–233.
    1. Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, et al. (2010) Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother 65: 2556–2565.
    1. Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11: 2112–2122.
    1. Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, et al. (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76: 5237–5246.
    1. Kovatcheva-Datchary P, Egert M, Maathuis A, Rajilic-Stojanovic M, de Graaf AA, et al. (2009) Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol 11: 914–926.
    1. Macfarlane GT, Macfarlane S (2007) Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol 18: 156–162.
    1. Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102: 1187–1196.
    1. Cinquin C, Le Blay G, Fliss I, Lacroix C (2004) Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb Ecol 48: 128–138.
    1. Dostal A, Fehlbaum S, Chassard C, Zimmermann MB, Lacroix C (2013) Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol 83: 161–175.
    1. Payne AN, Chassard C, Banz Y, Lacroix C (2012) The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol Ecol 80: 608–623.
    1. Zihler A, Gagnon M, Chassard C, Hegland A, Stevens MJ, et al. (2010) Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology 156: 3342–3353.
    1. Le Blay G, Chassard C, Baltzer S, Lacroix C (2010) Set up of a new in vitro model to study dietary fructans fermentation in formula-fed babies. Br J Nutr 103: 403–411.
    1. Cinquin C, Le Blay G, Fliss I, Lacroix C (2006) New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol Ecol 57: 324–336.
    1. Cinquin C, Le Blay G, Fliss I, Lacroix C (2006) Comparative effects of exopolysaccharides from lactic acid bacteria and fructo-oligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells. FEMS Microbiol Ecol 57: 226–238.
    1. Cleusix V, Lacroix C, Vollenweider S, Le Blay G (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol 63: 56–64.
    1. Zihler A, Gagnon M, Chassard C, Lacroix C (2011) Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiol 11: 264.
    1. Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, et al... (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol.
    1. Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35: 180–187.
    1. Le Blay G, Rytka J, Zihler A, Lacroix C (2009) New in vitro colonic fermentation model for Salmonella infection in the child gut. FEMS Microbiol Ecol 67: 198–207.
    1. Michel C, Kravtchenko TP, David A, Gueneau S, Kozlowski F, et al. (1998) In vitro prebiotic effects of Acacia gums onto the human intestinal microbiota depends on both origin and environmental pH. Anaerobe 4: 257–266.
    1. Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, et al. (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4: e6669.
    1. Salonen A, Nikkila J, Jalanka-Tuovinen J, Immonen O, Rajilic-Stojanovic M, et al. (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81: 127–134.
    1. Rajilic-Stojanovic M, Maathuis A, Heilig HG, Venema K, de Vos WM, et al. (2010) Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology 156: 3270–3281.
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484.
    1. Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Mol Microbiol 59: 1639–1650.
    1. Walker AW, Duncan SH, Harmsen HJ, Holtrop G, Welling GW, et al. (2008) The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol 10: 3275–3283.
    1. Matsumoto M, Tani H, Ono H, Ohishi H, Benno Y (2002) Adhesive property of Bifidobacterium lactis LKM512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr Microbiol 44: 212–215.
    1. Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70: 443–459.
    1. Cummings JH (1995) Short chain fatty acids. In: Gibson GR, Macfarlane GT, editors. Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology: Boca Raton, FL: CRC Press. 101–130.
    1. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2012) The influence of diet on the gut microbiota. Pharmacol Res.
    1. Roy CC, Kien CL, Bouthillier L, Levy E (2006) Short-chain fatty acids: ready for prime time? Nutr Clin Pract 21: 351–366.
    1. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71: 3692–3700.
    1. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, et al. (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66: 1654–1661.
    1. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, et al. (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186: 2099–2106.
    1. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294: 1–8.
    1. Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, et al. (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80 Suppl 1S147–171.
    1. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70: 5810–5817.
    1. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, et al. (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72: 3593–3599.
    1. Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72: 7835–7841.
    1. Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, et al. (2007) Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol 73: 6526–6533.
    1. Flint HJ, Louis P, Scott KP, Duncan SH (2007) Commensal bacteria in health and disease. In: Brodgen KA, Minion, C F., Cornick, N, Stanton, T B., Zhang, Q, Nolan, L K., Wannemuehler, M J., editor. Virulence Mechanisms of Bacterial Pathogens. Washington, DC, USA: ASM Press. 101–115.
    1. Russell JB, Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39: 205–234.
    1. Wang Q, Cui Y, Wang W, Xu J, Xu L (2012) Production of two bacteriocins in various growth conditions produced by gram-positive bacteria isolated from chicken cecum. Can J Microbiol 58: 93–101.
    1. Rajilic-Stojanovic M, Heilig HG, Tims S, Zoetendal EG, de Vos WM (2012) Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol.
    1. Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, et al. (2011) Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 6: e23035.

Source: PubMed

3
Abonner