Proton Therapy of Prostate and Pelvic Lymph Nodes for High Risk Prostate Cancer: Acute Toxicity

Richard Choo, David W Hillman, Thomas Daniels, Carlos Vargas, Jean Claude Rwigema, Kimberly Corbin, Sameer Keole, Sujay Vora, Kenneth Merrell, Bradley Stish, Thomas Pisansky, Brian Davis, Adam Amundson, William Wong, Richard Choo, David W Hillman, Thomas Daniels, Carlos Vargas, Jean Claude Rwigema, Kimberly Corbin, Sameer Keole, Sujay Vora, Kenneth Merrell, Bradley Stish, Thomas Pisansky, Brian Davis, Adam Amundson, William Wong

Abstract

Purpose: To assess acute gastrointestinal (GI) and genitourinary (GU) toxicities of intensity-modulated proton therapy (IMPT) targeting the prostate/seminal vesicles and pelvic lymph nodes for prostate cancer.

Materials and methods: A prospective study (ClinicalTrials.gov: NCT02874014), evaluating moderately hypofractionated IMPT for high-risk or unfavorable intermediate-risk prostate cancer, accrued a target sample size of 56 patients. The prostate/seminal vesicles and pelvic lymph nodes were treated simultaneously with 6750 and 4500 centigray radiobiologic equivalent (cGyRBE), respectively, in 25 daily fractions. All received androgen-deprivation therapy. Acute GI and GU toxicities were prospectively assessed from 7 GI and 9 GU categories of the Common Terminology Criteria for Adverse Events (version 4), at baseline, weekly during radiotherapy, and 3-month after radiotherapy. Fisher exact tests were used for comparisons of categorical data.

Results: Median age was 75 years. Median follow-up was 25 months. Fifty-five patients were available for acute toxicity assessment. Sixty-two percent and 2%, respectively, experienced acute grade 1 and 2 GI toxicity. Grade 2 GI toxicity was proctitis. Sixty-five percent and 35%, respectively, had acute grade 1 and 2 GU toxicity. The 3 most frequent grade 2 GU toxicities were urinary frequency, urgency, and obstructive symptoms. None had acute grade ≥ 3 GI or GU toxicity. The presence of baseline GI and GU symptoms was associated with a greater likelihood of experiencing acute GI and GU toxicity, respectively. Of 45 patients with baseline GU symptoms, 44% experienced acute grade 2 GU toxicity, compared with only 10% among 10 with no baseline GU symptoms (P = 0.07). Although acute grade 1 and 2 GI and GU toxicities were common during radiotherapy, most resolved at 3 months after radiotherapy.

Conclusion: A moderately hypofractionated IMPT targeting the prostate/seminal vesicles and regional pelvic lymph nodes was well tolerated with no acute grade ≥ 3 GI or GU toxicity. Patients with baseline GU symptoms had a higher rate of acute grade 2 GU toxicity.

Keywords: acute toxicity; hypofractionation; prostate cancer; proton therapy.

Conflict of interest statement

Conflicts of Interest: The authors have no conflicts of interest to disclose.

©Copyright 2021 The Author(s).

Figures

Figure 1.
Figure 1.
(A) Baseline gastrointestinal (GI) symptoms and maximum acute GI toxicity scores in the 7 GI categories during radiotherapy (RT) and at 3 months after RT. (B) Baseline genitourinary (GU) symptoms and maximum acute GU toxicity scores in the 9 GU categories during RT and at 3 months after RT.
Figure 2.
Figure 2.
Gastrointestinal toxicity during radiotherapy (RT) and at 3 months after RT.
Figure 3.
Figure 3.
Genitourinary toxicity during radiotherapy (RT) and at 3 months after RT.

References

    1. Zapatero A, Guerrero A, Maldonado X, Alvarez A, Gonzalez San Segundo C, Cabeza Rodriguez MA, Macias V, Pedro Olive A, Casas F, Boladeras A, de Vidales CM, Vazquez de la Torre ML, Villa S, Perez de la Haza A, Calvo FA. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16:320–7.
    1. Pilepich MV, Winter K, Lawton CA, Krisch RE, Wolkov HB, Movsas B, Hug EB, Asbell SO, Grignon D. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma—long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys. 2005;61:1285–90.
    1. Roach M, III, Bae K, Speight J, Wolkov HB, Rubin P, Lee RJ, Lawton C, Valicenti R, Grignon D, Pilepich MV. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol. 2008;26:585–91.
    1. Lawton CAF, Lin X, Hanks GE, Lepor H, Grignon DJ, Brereton HD, Bedi M, Rosenthal SA, Zeitzer KL, Venkatesan VM, Horwitz EM, Pisansky TM, Kim H, Parliament MB, Rabinovitch R, Roach M, III, Kwok Y, Dignam JJ, Sandler HM. Duration of androgen deprivation in locally advanced prostate cancer: long-term update of NRG oncology RTOG 9202. Int J Radiat Oncol Biol Phys. 2017;98:296–303.
    1. Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C, Billiet I, Torecilla JL, Pfeffer R, Cutajar CL, Van der Kwast T, Collette L. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 2010;11:1066–73.
    1. Warde P, Mason M, Ding K, Kirkbride P, Brundage M, Cowan R, Gospodarowicz M, Sanders K, Kostashuk E, Swanson G, Barber J, Hiltz A, Parmar MKB, Sathya J, Anderson J, Hayter C, Hetherington J, Sydes MR, Parulekar W, NCIC CTG PR.3/MRC UK PR07 Investigators Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet. 2011;378:2104–11.
    1. Dasu A, Toma-Dasu I. Prostate alpha/beta revisited—an analysis of clinical results from 14 168 patients. Acta Oncol. 2012;51:963–74.
    1. Miralbell R, Roberts SA, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82:e17–24.
    1. Fowler J, Chappell R, Ritter M. Is α/β for prostate tumors really low? Int J Radiat Oncol Biol Phys. 2001;50:1021–31.
    1. Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low α/β ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys. 2002;52:6–13.
    1. Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konski AA, Stoyanova R, Movsas B, Greenberg RE, Uzzo RG, Ma C, Buyyounouski MK. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31:3860–8.
    1. Catton CN, Lukka H, Gu CS, Martin JM, Supiot S, Chung PWM, Bauman GS, Bahary JP, Ahmed S, Cheung P, Tai KH, Wu JS, Parliament MB, Tsakiridis T, Corbett TB, Tang C, Dayes IS, Warde P, Craig TK, Julian JA, Levine MN. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J Clin Oncol. 2017;35:1884–90.
    1. Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, Shah AB, D'Souza DP, Michalski JM, Dayes IS, Seaward SA, Hall WA, Nguyen PL, Pisansky TM, Faria SL, Chen Y, Koontz BF, Paulus R, Sandler HM. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol. 2016;34:2325–32.
    1. Incrocci L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, Krol S, van der Toorn PP, Jager H, Heemsbergen W, Heijmen B, Pos F. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17:1061–9.
    1. Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, Graham J, Kirkbride P, Logue J, Malik Z, Money-Kyrle J, O'Sullivan JM, Panades M, Parker C, Patterson H, Scrase C, Staffurth J, Stockdale A, Tremlett J, Bidmead M, Mayles H, Naismith O, South C, Gao A, Cruickshank C, Hassan S, Pugh J, Griffin C, Hall E, CHHiP Investigators Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17:1047–60.
    1. Prospective evaluation of hypofractionation proton beam therapy with concurrent treatment of the prostate and pelvic nodes for clinically localized, high risk or unfavorable intermediate risk prostate cancer. Identifier NCT02874014 . Published August 22, 2016. Updated August 13, 2020. Accessed March 15, 2021.
    1. Whitaker TJ, Routman DM, Schultz H, Harmsen WS, Corbin KS, Wong WW, Choo R. IMPT versus VMAT for pelvic nodal irradiation in prostate cancer: a dosimetric comparison. Int J Part Ther. 2019;5:11–23.
    1. Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M, Seider M. RTOG GU. Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74:383–7.
    1. Fiorino C, Alongi F, Perna L, Broggi S, Cattaneo GM, Cozzarini C, Di Muzio N, Fazio F, Calandrino R. Dose-volume relationships for acute bowel toxicity in patients treated with pelvic nodal irradiation for prostate cancer. Int J Radiat Oncol Biol Phys. 2009;75:29–35.
    1. Ashman JB, Zelefsky MJ, Hunt MS, Leibel SA, Fuks Z. Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:765–71.
    1. Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, Lee AK, Pollack A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70:67–74.
    1. Lim TS, Cheung PC, Loblaw DA, Morton G, Sixel KE, Pang G, Basran P, Zhang L, Tirona R, Szumacher E, Danjoux C, Choo R, Thomas G. Hypofractionated accelerated radiotherapy using concomitant intensity-modulated radiotherapy boost technique for localized high-risk prostate cancer: acute toxicity results. Int J Radiat Oncol Biol Phys. 2008;72:85–92.
    1. Chuong MD, Hartsell W, Larson G, Tsai H, Laramore GE, Rossi CJ, Wilkinson JB, Kaiser A, Vargas C. Minimal toxicity after proton beam therapy for prostate and pelvic nodal irradiation: results from the proton collaborative group REG001-09 trial. Acta Oncol. 2018;57:368–74.

Source: PubMed

3
Abonner