Feasibility and Safety of Whole-Body Electromyostimulation in Frail Older People-A Pilot Trial

Joerg Bloeckl, Sebastian Raps, Michael Weineck, Robert Kob, Thomas Bertsch, Wolfgang Kemmler, Daniel Schoene, Joerg Bloeckl, Sebastian Raps, Michael Weineck, Robert Kob, Thomas Bertsch, Wolfgang Kemmler, Daniel Schoene

Abstract

Whole-body electromyostimulation (WB-EMS) induces high-intense stimuli to skeletal muscles with low strain on joints and the autonomic nervous system and may thus be suitable for frail, older people. However, if trained at very high intensities, WB-EMS may damage muscles and kidneys (rhabdomyolysis). This study aimed at investigating the feasibility, safety and preliminary efficacy of WB-EMS in frail, older people. Seven frail (81.3 ± 3.5 years), 11 robust (79.5 ± 3.6 years), 10 young (29.1 ± 6.4 years) participants completed an eight-week WB-EMS training (week 1-4: 1x/week; week 5-8: 1.5x/week) consisting of functional exercises addressing lower extremity strength and balance. Feasibility was assessed using recruitment, adherence, retention, and dropout rates. The satisfaction with WB-EMS was measured using the Physical Activity Enjoyment Scale for older adults (PACES-8). In week 1, 3, and 8 creatine kinase (CK) was assessed immediately before, 48 and 72 h after WB-EMS. Symptoms of rhabdomyolysis (muscle pain, muscle weakness, myoglobinuria) and adverse events were recorded. Functional capacity was assessed at baseline and after 8 weeks using the Short Physical Performance Battery (SPPB), Timed Up-and-Go Test (TUG), Choice Stepping Reaction Time Test (CSRT), 30-second Chair-Stand Test (30-STS), maximum isometric leg strength and handgrip strength. The recruitment rate of frail individuals was 46.2%, adherence 88.3% and the dropout rate 16.7%. All groups indicated a high satisfaction with WB-EMS. CK activity was more pronounced in young individuals with significant changes over time. Within older people CK increased borderline-significantly in the frail group from baseline to week 1 but not afterwards. In robust individuals CK increased significantly from baseline to week 1 and 3. No participant reached CK elevations close to the threshold of ≥5,000 U/l and no symptoms of rhabdomyolysis were observed. With the exception of the TUG (p = 0.173), frail individuals improved in all tests of functional capacity. Compared to the young and robust groups, frail individuals showed the greater improvements in the SPPB, handgrip strength, maximum isokinetic hip-/knee extension and flexion strength. WB-EMS is feasible for frail older people. There were no clinical signs of exertional rhabdomyolysis. WB-EMS proved to be sufficiently intense to induce meaningful changes in functional capacity with frail individuals showing greater improvements for several measures.

Keywords: aged; electric stimulation; frailty; functional capacity; rhabdomyolysis; safety.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Bloeckl, Raps, Weineck, Kob, Bertsch, Kemmler and Schoene.

Figures

FIGURE 1
FIGURE 1
Illustration of WB-EMS.
FIGURE 2
FIGURE 2
Diagram of participant flow.
FIGURE 3
FIGURE 3
Boxplots displaying the median with interquartile range for CK kinetics of young (n = 10) and older participants (n = 18) over the course of 8 weeks (immediately before, after 48 h, after 72 h) WB-EMS. Starting from week 5, three WB-EMS sessions were performed within 2 weeks with breaks of 4 days. Therefore, CK elevations before the last training in week 8 represent the 96 h CK peak of the previous WB-EMS session.
FIGURE 4
FIGURE 4
Changes between baseline and 8 weeks in strength and functional capacity measures for robust and frail individuals. Displayed are within- and between-group differences for the Short Physical Performance Battery [SPPB, (A)], Timed-up & Go test [TUG, (B)], handgrip strength (C), Choice Stepping Reaction Time [CSRT, (D)]. All measures were analysed non-parametrically using the Wilcoxon signed-rank test (within-group) and the Mann–Whitney U-test (between-group).

References

    1. Amaral J. F., Alvim F. C., Castro E. A., Doimo L. A., Silva M. V., Novo Júnior J. M. (2014). Influence of Aging on Isometric Muscle Strength, Fat-free Mass and Electromyographic Signal Power of the Upper and Lower Limbs in Women. Braz. J. Phys. Ther. 18 (2), 183–190. 10.1590/s1413-35552012005000145
    1. Baird M. F., Graham S. M., Baker J. S., Bickerstaff G. F. (2012). Creatine-kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery. J. Nutr. Metabolism 2012, 1–13. 10.1155/2012/960363
    1. Beaudart C., Rolland Y., Cruz-Jentoft A. J., Bauer J. M., Sieber C., Cooper C., et al. (2019). Assessment of Muscle Function and Physical Performance in Daily Clinical Practice. Calcif. Tissue Int. 105 (1), 1–14. 10.1007/s00223-019-00545-w
    1. Bernabei R., Martone A. M., Vetrano D. L., Calvani R., Landi F., Marzetti E. (2014). Frailty, Physical Frailty, Sarcopenia: A New Conceptual Model. Stud. Health Technol. Inf. 203, 78–84.
    1. Bohannon R. W. (2019). Grip Strength: An Indispensable Biomarker for Older Adults. Cia Vol. 14, 1681–1691. 10.2147/CIA.S194543
    1. Borg Gb E. (2010). The Borg CR Scales® Folder. Sweden: HasselbyBorg Perception.
    1. Bowen D. J., Kreuter M., Spring B., Cofta-Woerpel L., Linnan L., Weiner D., et al. (2009). How We Design Feasibility Studies. Am. J. Prev. Med. 36 (5), 452–457. 10.1016/j.amepre.2009.02.002
    1. Brown C. V. R., Rhee P., Chan L., Evans K., Demetriades D., Velmahos G. C. (2004). Preventing Renal Failure in Patients with Rhabdomyolysis: Do Bicarbonate and Mannitol Make a Difference? J. Trauma Inj. Infect. Crit. Care 56 (6), 1191–1196. 10.1097/01.ta.0000130761.78627.10
    1. Cervellin G., Comelli I., Benatti M., Sanchis-Gomar F., Bassi A., Lippi G. (2017). Non-traumatic Rhabdomyolysis: Background, Laboratory Features, and Acute Clinical Management. Clin. Biochem. 50 (12), 656–662. 10.1016/j.clinbiochem.2017.02.016
    1. Cesari M., Landi F., Landi F., Calvani R., Cherubini A., Di Bari M., et al. (2017). Rationale for a Preliminary Operational Definition of Physical Frailty and Sarcopenia in the SPRINTT Trial. Aging Clin. Exp. Res. 29 (1), 81–88. 10.1007/s40520-016-0716-1
    1. Chapman D., Newton M., Sacco P., Nosaka K. (2006). Greater Muscle Damage Induced by Fast versus Slow Velocity Eccentric Exercise. Int. J. Sports Med. 27 (08), 591–598. 10.1055/s-2005-865920
    1. Clegg A., Young J., Iliffe S., Rikkert M. O., Rockwood K. (2013). Frailty in Elderly People. Lancet 381 (9868), 752–762. 10.1016/s0140-6736(12)62167-9
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, N.J.: L. Erlbaum Associates.
    1. Cvecka J., Tirpakova V., Sedliak M., Kern H., Mayr W., Hamar D. (2015). Physical Activity in Elderly. Eur. J. Transl. Myol. 25 (4), 249–252. 10.4081/ejtm.2015.5280
    1. Dedeyne L., Dewinter L., Lovik A., Verschueren S., Tournoy J., Gielen E. (2018). Nutritional and Physical Exercise Programs for Older People: Program Format Preferences and (Dis)incentives to Participate. Cia Vol. 13, 1259–1266. 10.2147/cia.S159819
    1. Delbaere K., Gschwind Y., Sherrington C., Barraclough E., Garrués-Irisarri M., Lord S. (2016). Validity and Reliability of a Simple 'low-Tech' Test for Measuring Choice Stepping Reaction Time in Older People. Clin. Rehabil. 30 (11), 1128–1135. 10.1177/0269215515613422
    1. Dent E., Morley J. E., Cruz-Jentoft A. J., Arai H., Kritchevsky S. B., Guralnik J., et al. (2018). International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 22 (10), 1148–1161. 10.1007/s12603-018-1139-9
    1. Dent E., Morley J. E., Cruz-Jentoft A. J., Woodhouse L., Rodríguez-Mañas L., Fried L. P., et al. (2019). Physical Frailty: ICFSR International Clinical Practice Guidelines for Identification and Management. J. Nutr. Health Aging 23 (9), 771–787. 10.1007/s12603-019-1273-z
    1. El-Kotob R., Giangregorio L. M. (2018). Pilot and Feasibility Studies in Exercise, Physical Activity, or Rehabilitation Research. Pilot Feasibility Stud. 4 (1), 137. 10.1186/s40814-018-0326-0
    1. Eldridge S. M., Chan C. L., Campbell M. J., Bond C. M., Hopewell S., Thabane L., et al. (2016). CONSORT 2010 Statement: Extension to Randomised Pilot and Feasibility Trials. BMJ 355, i5239. 10.1136/bmj.i5239
    1. Fernandes P. M., Davenport R. J. (2019). How to Do it: Investigate Exertional Rhabdomyolysis (Or Not). Pract. Neurol. 19 (1), 43–48. 10.1136/practneurol-2018-002008
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). "Mini-mental State". J. Psychiatric Res. 12 (3), 189–198. 10.1016/0022-3956(75)90026-6
    1. Freitag S., Schmidt S., Gobbens R. J. J. (2016). Tilburg Frailty Indicator. Z Gerontol. Geriat 49 (2), 86–93. 10.1007/s00391-015-0889-9
    1. Fried L. P., Tangen C. M., Walston J., Newman A. B., Hirsch C., Gottdiener J., et al. (2001). Frailty in Older Adults: Evidence for a Phenotype. Journals Gerontology Ser. A Biol. Sci. Med. Sci. 56 (3), M146–M157. 10.1093/gerona/56.3.m146
    1. Gardner M. M., Buchner D. M., Robertson M. C., Campbell A. J. (2001). Practical Implementation of an Exercise-Based Falls Prevention Programme. Age Ageing 30 (1), 77–83. 10.1093/ageing/30.1.77
    1. Gobbens R. J. J., Boersma P., Uchmanowicz I., Santiago L. M. (2020). The Tilburg Frailty Indicator (TFI): New Evidence for its Validity. Cia Vol. 15, 265–274. 10.2147/cia.S243233
    1. Gobbens R. J. J., van Assen M. A. L. M., Luijkx K. G., Wijnen-Sponselee M. T., Schols J. M. G. A. (2010). The Tilburg Frailty Indicator: Psychometric Properties. J. Am. Med. Dir. Assoc. 11 (5), 344–355. 10.1016/j.jamda.2009.11.003
    1. Groslambert A., Mahon A. D. (2006). Perceived Exertion. Sports Med. 36 (11), 911–928. 10.2165/00007256-200636110-00001
    1. Guralnik J. M., Ferrucci L., Pieper C. F., Leveille S. G., Markides K. S., Ostir G. V., et al. (2000). Lower Extremity Function and Subsequent Disability: Consistency across Studies, Predictive Models, and Value of Gait Speed Alone Compared with the Short Physical Performance Battery. Journals Gerontology Ser. A Biol. Sci. Med. Sci. 55 (4), M221–M231. 10.1093/gerona/55.4.m221
    1. Guralnik J. M., Simonsick E. M., Ferrucci L., Glynn R. J., Berkman L. F., Blazer D. G., et al. (1994). A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. gerontology 49 (2), M85–M94. 10.1093/geronj/49.2.m85
    1. Hadjistavropoulos T., Herr K., Prkachin K. M., Craig K. D., Gibson S. J., Lukas A., et al. (2014). Pain Assessment in Elderly Adults with Dementia. Lancet Neurology 13 (12), 1216–1227. 10.1016/s1474-4422(14)70103-6
    1. Harris R., Dyson E. (2001). Recruitment of Frail Older People to Research: Lessons Learnt through Experience. J. Adv. Nurs. 36 (5), 643–651. 10.1046/j.1365-2648.2001.02029.x
    1. Hettchen M., Glöckler K., von Stengel S., Piechele A., Lötzerich H., Kohl M., et al. (2019). Effects of Compression Tights on Recovery Parameters after Exercise Induced Muscle Damage: A Randomized Controlled Crossover Study. Evidence-Based Complementary Altern. Med. 2019, 1–11. 10.1155/2019/5698460
    1. Inouye S. K., Studenski S., Tinetti M. E., Kuchel G. A. (2007). Geriatric Syndromes: Clinical, Research, and Policy Implications of a Core Geriatric Concept. J. Am. Geriatrics Soc. 55 (5), 780–791. 10.1111/j.1532-5415.2007.01156.x
    1. Izquierdo M., Merchant R. A., Morley J. E., Anker S. D., Aprahamian I., Arai H., et al. (2021). International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging 25 (7), 824–853. 10.1007/s12603-021-1665-8
    1. Jones C. J., Rikli R. E., Beam W. C. (1999). A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport 70 (2), 113–119. 10.1080/02701367.1999.10608028
    1. Kemmler W., Engelke K., von Stengel S. (2012). Ganzkörper-Elektromyostimulation zur Prävention der Sarkopenie bei einem älteren Risikokollektiv. Die Test-III Studie. Dtsch. Z Sportmed 2012 (12), 343–350. 10.5960/dzsm.2012.044
    1. Kemmler W., Froehlich M., von Stengel S., Kleinöder H. (2016). Whole-Body Electromyostimulation - the Need for Common Sense! Rationale and Guideline for a Safe and Effective Training. Dtsch. Z Sportmed 2016 (67), 218–221. 10.5960/dzsm.2016.246
    1. Kemmler W., Grimm A., Bebenek M., Kohl M., von Stengel S. (2018). Effects of Combined Whole-Body Electromyostimulation and Protein Supplementation on Local and Overall Muscle/Fat Distribution in Older Men with Sarcopenic Obesity: The Randomized Controlled Franconia Sarcopenic Obesity (FranSO) Study. Calcif. Tissue Int. 103 (3), 266–277. 10.1007/s00223-018-0424-2
    1. Kemmler W., Kleinöder H., Fröhlich M. (2020). Editorial: Whole-Body Electromyostimulation: A Training Technology to Improve Health and Performance in Humans? Front. Physiol. 11, 523. 10.3389/fphys.2020.00523
    1. Kemmler W., Kohl M., Fröhlich M., Engelke K., von Stengel S., Schoene D. (2020). Effects of High-Intensity Resistance Training on Fitness and Fatness in Older Men with Osteosarcopenia. Front. Physiol. 11 (1014). 10.3389/fphys.2020.01014
    1. Kemmler W., Schliffka R., Mayhew J. L., von Stengel S. (2010). Effects of Whole-Body Electromyostimulation on Resting Metabolic Rate, Body Composition, and Maximum Strength in Postmenopausal Women: the Training and ElectroStimulation Trial. J. Strength Cond. Res. 24 (7), 1880–1887. 10.1519/JSC.0b013e3181ddaeee
    1. Kemmler W., Shojaa M., Steele J., Berger J., Fröhlich M., Schoene D., et al. (2021). Efficacy of Whole-Body Electromyostimulation (WB-EMS) on Body Composition and Muscle Strength in Non-athletic Adults. A Systematic Review and Meta-Analysis. Front. Physiol. 12, 640657. 10.3389/fphys.2021.640657
    1. Kemmler W., Teschler M., Weissenfels A., Bebenek M., von Stengel S., Kohl M., et al. (2016). Whole-body Electromyostimulation to Fight Sarcopenic Obesity in Community-Dwelling Older Women at Risk. Resultsof the Randomized Controlled FORMOsA-Sarcopenic Obesity Study. Osteoporos. Int. 27 (11), 3261–3270. 10.1007/s00198-016-3662-z
    1. Kemmler W., von Stengel S., Kohl M., Rohleder N., Bertsch T., Sieber C. C., et al. (2020). Safety of a Combined WB-EMS and High-Protein Diet Intervention in Sarcopenic Obese Elderly Men. Cia Vol. 15, 953–967. 10.2147/cia.S248868
    1. Kemmler W., Weissenfels A., Teschler M., Weissenfels A., Froehlich M., Kohl M., et al. (2015). Ganzkörper Elektromyostimulation versus HIT-Krafttraining - Einfluss auf Körperzusammensetzung und Muskelkraft. Dtsch. Z Sportmed 2015, 321–327. 10.5960/dzsm.2015.209
    1. Kemmler W., Weissenfels A., Teschler M., Willert S., Bebenek M., Shojaa M., et al. (2017). Whole-body Electromyostimulation and Protein Supplementation Favorably Affect Sarcopenic Obesity in Community-Dwelling Older Men at Risk: the Randomized Controlled FranSO Study. Cia 12, 1503–1513. 10.2147/cia.S137987
    1. Kemmler W., Weissenfels A., Willert S., Fröhlich M., Ludwig O., Berger J., et al. (2019). Recommended Contraindications for the Use of Non-medical WB-Electromyostimulation. Dtsch. Z Sportmed 70, 278–282. 10.5960/dzsm.2019.401
    1. Kemp J., Després O., Pebayle T., Dufour A. (2014). Age-related Decrease in Sensitivity to Electrical Stimulation Is Unrelated to Skin Conductance: an Evoked Potentials Study. Clin. Neurophysiol. 125 (3), 602–607. 10.1016/j.clinph.2013.08.020
    1. Kempen G., Vansonderen E. (2002). Psychological Attributes and Changes in Disability Among Low-Functioning Older personsDoes Attrition Affect the Outcomes? J. Clin. Epidemiol. 55 (3), 224–229. 10.1016/s0895-4356(01)00474-7
    1. Kern H., Barberi L., Lã¶fler S., Sbardella S., Burggraf S., Fruhmann H., et al. (2014). Electrical Stimulation Counteracts Muscle Decline in Seniors. Front. Aging Neurosci. 6, 189. 10.3389/fnagi.2014.00189
    1. Kim J., Jee Y. (2020). EMS-effect of Exercises with Music on Fatness and Biomarkers of Obese Elderly Women. Medicina 56 (4), 158. 10.3390/medicina56040158
    1. Kim J., Lee J., Kim S., Ryu H. Y., Cha K. S., Sung D. J. (2016). Exercise-induced Rhabdomyolysis Mechanisms and Prevention: A Literature Review. J. Sport Health Sci. 5 (3), 324–333. 10.1016/j.jshs.2015.01.012
    1. Kitchen C. M. R. (2009). Nonparametric vs Parametric Tests of Location in Biomedical Research. Am. J. Ophthalmol. 147 (4), 571–572. 10.1016/j.ajo.2008.06.031
    1. Koch A. J., Pereira R., Machado M. (2014). The Creatine Kinase Response to Resistance Exercise. J. Musculoskelet. Neuronal Interact. 14 (1), 68–77.
    1. Lancaster G. A., Thabane L. (2019). Guidelines for Reporting Non-randomised Pilot and Feasibility Studies. Pilot Feasibility Stud. 5 (1), 114. 10.1186/s40814-019-0499-1
    1. Landi F., Calvani R., Martone A. M., Salini S., Zazzara M. B., Candeloro M., et al. (2020). Normative Values of Muscle Strength across Ages in a 'real World' Population: Results from the Longevity Check‐up 7+ Project. J. Cachexia, Sarcopenia Muscle 11 (6), 1562–1569. 10.1002/jcsm.12610
    1. Lang T., Streeper T., Cawthon P., Baldwin K., Taaffe D. R., Harris T. B. (2010). Sarcopenia: Etiology, Clinical Consequences, Intervention, and Assessment. Osteoporos. Int. 21 (4), 543–559. 10.1007/s00198-009-1059-y
    1. Lippi G., Schena F., Ceriotti F. (2018). Diagnostic Biomarkers of Muscle Injury and Exertional Rhabdomyolysis. Clin. Chem. Lab. Med. 57 (2), 175–182. 10.1515/cclm-2018-0656
    1. Lord S. R., Fitzpatrick R. C. (2001). Choice Stepping Reaction Time: a Composite Measure of Falls Risk in Older People. Journals Gerontology Ser. A Biol. Sci. Med. Sci. 56 (10), M627–M632. 10.1093/gerona/56.10.m627
    1. Maffiuletti N. A., Herrero A. J., Jubeau M., Impellizzeri F. M., Bizzini M. (2008). Differences in Electrical Stimulation Thresholds between Men and Women. Ann. Neurol. 63 (4), 507–512. 10.1002/ana.21346
    1. Maffiuletti N. A. (2010). Physiological and Methodological Considerations for the Use of Neuromuscular Electrical Stimulation. Eur. J. Appl. Physiol. 110 (2), 223–234. 10.1007/s00421-010-1502-y
    1. McGregor R. A., Cameron-Smith D., Poppitt S. D. (2014). It Is Not Just Muscle Mass: a Review of Muscle Quality, Composition and Metabolism during Ageing as Determinants of Muscle Function and Mobility in Later Life. Longev. Heal. 3 (1), 9. 10.1186/2046-2395-3-9
    1. Mendelsohn M. E., Connelly D. M., Overend T. J., Petrella R. J. (2008). Validity of Values for Metabolic Equivalents of Task during Submaximal All-Extremity Exercise and Reliability of Exercise Responses in Frail Older Adults. Phys. Ther. 88 (6), 747–756. 10.2522/ptj.20070161
    1. Miljkovic N., Lim J.-Y., Miljkovic I., Frontera W. R. (2015). Aging of Skeletal Muscle Fibers. Ann. Rehabil. Med. 39 (2), 155–162. 10.5535/arm.2015.39.2.155
    1. Morishita S., Tsubaki A., Nakamura M., Nashimoto S., Fu J. B., Onishi H. (2019). Rating of Perceived Exertion on Resistance Training in Elderly Subjects. Expert Rev. Cardiovasc. Ther. 17 (2), 135–142. 10.1080/14779072.2019.1561278
    1. Mullen S. P., Olson E. A., Phillips S. M., Szabo A. N., Wójcicki T. R., Mailey E. L., et al. (2011). Measuring Enjoyment of Physical Activity in Older Adults: Invariance of the Physical Activity Enjoyment Scale (Paces) across Groups and Time. Int. J. Behav. Nutr. Phys. Act. 8 (1), 103. 10.1186/1479-5868-8-103
    1. Murrock C. J., Bekhet A., Zauszniewski J. A. (2016). Psychometric Evaluation of the Physical Activity Enjoyment Scale in Adults with Functional Limitations. Issues Ment. Health Nurs. 37 (3), 164–171. 10.3109/01612840.2015.1088904
    1. Norman K., Stobäus N., Gonzalez M. C., Schulzke J.-D., Pirlich M. (2011). Hand Grip Strength: Outcome Predictor and Marker of Nutritional Status. Clin. Nutr. 30 (2), 135–142. 10.1016/j.clnu.2010.09.010
    1. Nosaka K., Aoki M. (2011). Repeated Bout Effect: Research Update and Future Perspective. Braz J. Biomotricity 5, 5–15.
    1. Nosaka K. (2011). “Exercise-induced Muscle Damage and Delayed Onset Muscle Soreness (DOMS),” in Strength and Conditioning: Biological Principals and Practical Applications. Editors Cardinale M., Newton R., Nosaka K. (Chicester: Wiley-Blackwell; ), 179–192.
    1. Nyman S. R., Victor C. R. (2012). Older People's Participation in and Engagement with Falls Prevention Interventions in Community Settings: an Augment to the Cochrane Systematic Review. Age Ageing 41 (1), 16–23. 10.1093/ageing/afr103
    1. O’Connor D., Brennan L., Caulfield B. (2018). The Use of Neuromuscular Electrical Stimulation (NMES) for Managing the Complications of Ageing Related to Reduced Exercise Participation. Maturitas 113, 13–20. 10.1016/j.maturitas.2018.04.009
    1. Okubo Y., Schoene D., Caetano M. J., Pliner E. M., Osuka Y., Toson B., et al. (2021). Stepping Impairment and Falls in Older Adults: A Systematic Review and Meta-Analysis of Volitional and Reactive Step Tests. Ageing Res. Rev. 66, 101238. 10.1016/j.arr.2020.101238
    1. Op het Veld L. P. M., van Rossum E., Kempen G. I. J. M., de Vet H. C. W., Hajema K., Beurskens A. J. H. M. (2015). Fried Phenotype of Frailty: Cross-Sectional Comparison of Three Frailty Stages on Various Health Domains. BMC Geriatr. 15, 77. 10.1186/s12877-015-0078-0
    1. Palve S. S., Palve S. B. (2018). Impact of Aging on Nerve Conduction Velocities and Late Responses in Healthy Individuals. J. Neurosci. Rural Pract. 09 (1), 112–116. 10.4103/jnrp.jnrp_323_17
    1. Pavasini R., Guralnik J., Brown J. C., di Bari M., Cesari M., Landi F., et al. (2016). Short Physical Performance Battery and All-Cause Mortality: Systematic Review and Meta-Analysis. BMC Med. 14 (1), 215. 10.1186/s12916-016-0763-7
    1. Penko A. L., Barkley J. E., Koop M. M., Alberts J. L. (2017). Borg Scale Is Valid for Ratings of Perceived Exertion for Individuals with Parkinson's Disease. Int. J. Exerc Sci. 10 (1), 76–86.
    1. Pereira D. G., Afonso A., Medeiros F. M. (2015). Overview of Friedman's Test and Post-hoc Analysis. Commun. Statistics - Simul. Comput. 44 (10), 2636–2653. 10.1080/03610918.2014.931971
    1. Perera S., Mody S. H., Woodman R. C., Studenski S. A. (2006). Meaningful Change and Responsiveness in Common Physical Performance Measures in Older Adults. J. Am. Geriatrics Soc. 54 (5), 743–749. 10.1111/j.1532-5415.2006.00701.x
    1. Picorelli A. M. A., Pereira L. S. M., Pereira D. S., Felício D., Sherrington C. (2014). Adherence to Exercise Programs for Older People Is Influenced by Program Characteristics and Personal Factors: a Systematic Review. J. Physiother. 60 (3), 151–156. 10.1016/j.jphys.2014.06.012
    1. Pincivero D. M. (2011). Older Adults Underestimate RPE and Knee Extensor Torque as Compared with Young Adults. Med. Sci. Sports Exerc 43 (1), 171–180. 10.1249/MSS.0b013e3181e91e0d
    1. Podsiadlo D., Richardson S. (1991). The Timed "Up & Go": a Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatrics Soc. 39 (2), 142–148. 10.1111/j.1532-5415.1991.tb01616.x
    1. Provencher V., Mortenson W. B., Tanguay-Garneau L., Bélanger K., Dagenais M. (2014). Challenges and Strategies Pertaining to Recruitment and Retention of Frail Elderly in Research Studies: a Systematic Review. Archives Gerontology Geriatrics 59 (1), 18–24. 10.1016/j.archger.2014.03.006
    1. Radbruch L., Loick G., Kiencke P., Lindena G., Sabatowski R., Grond S., et al. (1999). Validation of the German Version of the Brief Pain Inventory. J. Pain Symptom Manag. 18 (3), 180–187. 10.1016/s0885-3924(99)00064-0
    1. Rodríguez E., Soler M. J., Rap O., Barrios C., Orfila M. A., Pascual J. (2013). Risk Factors for Acute Kidney Injury in Severe Rhabdomyolysis. PloS one 8 (12), e82992. 10.1371/journal.pone.0082992
    1. Rosenthal R. (1991). Meta-analytic Procedures for Social Research. Newbury Park, CA: Sage.
    1. Sahin U. K., Kirdi N., Bozoglu E., Meric A., Buyukturan G., Ozturk A., et al. (2018). Effect of Low-Intensity versus High-Intensity Resistance Training on the Functioning of the Institutionalized Frail Elderly. Int. J. Rehabilitation Res. 41 (3), 211–217. 10.1097/MRR.0000000000000285
    1. Sayers S. P., Clarkson P. M., Lee J. (2000). Activity and Immobilization after Eccentric Exercise: II. Serum CK. Med. Sci. Sports Exerc. 32 (9), 1593–1597. 10.1097/00005768-200009000-00011
    1. Schifman R. B., Luevano D. R. (2019). Value and Use of Urinalysis for Myoglobinuria. Arch. Pathol. Lab. Med. 143 (11), 1378–1381. 10.5858/arpa.2018-0475-OA
    1. Schoene D., Delbaere K., Lord S. R. (2017). Impaired Response Selection during Stepping Predicts Falls in Older People-A Cohort Study. J. Am. Med. Dir. Assoc. 18 (8), 719–725. 10.1016/j.jamda.2017.03.010
    1. Seynnes O., Fiatarone Singh M. A., Hue O., Pras P., Legros P., Bernard P. L. (2004). Physiological and Functional Responses to Low-Moderate versus High-Intensity Progressive Resistance Training in Frail Elders. Journals Gerontology Ser. A Biol. Sci. Med. Sci. 59 (5), M503–M509. 10.1093/gerona/59.5.M503
    1. Stöllberger C., Finsterer J. (2019). Side Effects of Whole-Body Electro-Myo-Stimulation. Wien Med. Wochenschr 169 (7-8), 173–180. 10.1007/s10354-018-0655-x
    1. Teschler M., Weissenfels A., Fröhlich M., Kohl M., Bebenek M., von Stengel S., et al. (2016). Very) High Creatine Kinase (CK) Levels after Whole-Body Electromyostimulation. Are There Implications for Health? Int. J. Clin. Exp. Med. 9 (11), 22841–22850.
    1. Thomas L., Müller M., Schumann G., Weidemann G., Klein G., Lunau S., et al. (2005). Consensus of DGKL and VDGH for interim reference intervals on enzymes in serum Konsensus von DGKL und VDGH zu vorläufigen Referenzbereichen für Serumenzyme. LaboratoriumsMedizin 29 (5), 301–308. 10.1515/JLM.2005.041
    1. Van Buren E., Herring A. H. (2020). To Be Parametric or Non‐parametric, that Is the Question. BJOG Int. J. Obstet. Gy 127 (5), 549–550. 10.1111/1471-0528.15545
    1. Van der Elst M. C. J., Schoenmakers B., Schoenmakers B., Op het Veld L. P. M., De Roeck E. E., Van der Vorst A., et al. (2019). Concordances and Differences between a Unidimensional and Multidimensional Assessment of Frailty: a Cross-Sectional Study. BMC Geriatr. 19 (1), 346. 10.1186/s12877-019-1369-7
    1. Veenstra J., Smit W. M., Krediet R. T., Arisz L. (1994). Relationship between Elevated Creatine Phosphokinase and the Clinical Spectrum of Rhabdomyolysis. Nephrol. Dial. Transpl. 9 (6), 637–641. 10.1093/ndt/9.6.637
    1. Vermeiren S., Vella-Azzopardi R., Beckwée D., Habbig A. K., Scafoglieri A., Jansen B., et al. (2016). Frailty and the Prediction of Negative Health Outcomes: A Meta-Analysis. J. Am. Med. Dir. Assoc. 17 (12), 1163. 10.1016/j.jamda.2016.09.010
    1. Vetrano D. L., Palmer K., Marengoni A., Marzetti E., Lattanzio F., Roller-Wirnsberger R., et al. (2019). Frailty and Multimorbidity: A Systematic Review and Meta-Analysis. journals gerontology Ser. A, Biol. Sci. Med. Sci. 74 (5), 659–666. 10.1093/gerona/gly110
    1. von Stengel S., Bebenek M., Engelke K., Kemmler W. (2015). Whole-Body Electromyostimulation to Fight Osteopenia in Elderly Females: The Randomized Controlled Training and Electrostimulation Trial (TEST-III). J. Osteoporos. 2015, 1–7. 10.1155/2015/643520
    1. von Stengel S., Kemmler W. (2018). Trainability of Leg Strength by Whole-Body Electromyostimulation during Adult Lifespan: a Study with Male Cohorts. Cia Vol. 13, 2495–2502. 10.2147/cia.S185018
    1. Watanabe K., Yoshida T., Ishikawa T., Kawade S., Moritani T. (2019). Effect of the Combination of Whole-Body Neuromuscular Electrical Stimulation and Voluntary Exercise on Metabolic Responses in Human. Front. Physiol. 10 (291). 10.3389/fphys.2019.00291
    1. Weissenfels A., Teschler M., von Stengel S., Kohl M., Kemmler W. (2017). Effects of Whole-Body-Electromyostimulation on Low Back Pain - a Review of the Evidence. Dtsch. Z Sportmed 2017 (68), 295–300. 10.5960/dzsm.2017.302

Source: PubMed

3
Abonner