Efficacy of Whole-Body Electromyostimulation (WB-EMS) on Body Composition and Muscle Strength in Non-athletic Adults. A Systematic Review and Meta-Analysis

Wolfgang Kemmler, Mahdieh Shojaa, James Steele, Joshua Berger, Michael Fröhlich, Daniel Schoene, Simon von Stengel, Heinz Kleinöder, Matthias Kohl, Wolfgang Kemmler, Mahdieh Shojaa, James Steele, Joshua Berger, Michael Fröhlich, Daniel Schoene, Simon von Stengel, Heinz Kleinöder, Matthias Kohl

Abstract

This systematic review and meta-analysis set out to determine the efficacy on whole-body electromyostimulation (WB-EMS) on body composition and strength parameters in non-athletic cohorts. A systematic review of the literature according to the PRISMA statement included (a) controlled trials, (b) WB-EMS trials with at least one exercise and one control group, (c) WB-EMS as primary physical intervention, (d) WB-EMS with at least six electrodes covering most muscle groups, (e) non-athletic cohorts. We searched eight electronic databases up to June 30, 2020, without language restrictions. Standardized mean differences (SMD) for muscle mass parameters, total body fat mass, maximum leg extension, and trunk extension strength were defined as outcome measures. In summary, 16 studies with 19 individual WB-EMS groups representing 897 participants were included. Studies vary considerably with respect to age, BMI, and physical conditions. Impulse protocols of the studies were roughly comparable, but training frequency (1-5 sessions/week) and intervention length (6-54 weeks) differed between the studies. SMD average was 1.23 (95%-CI: 0.71-1.76) for muscle mass, 0.98 (0.74-1.22) for maximum leg, and 1.08 (0.78-1.39) for maximum trunk extension strength changes (all p < 0.001). SMD for body fat changes (-0.40, [-0.98 to 0.17]), however, did not reach significance. I 2 and Q-statistics revealed substantial heterogeneity of muscle and fat mass changes between the trials. However, rank and regression tests did not indicate positive evidence for small-study bias and funnel plot asymmetries. This work provided further evidence for significant, large-sized effects of WB-EMS on muscle mass and strength parameters, but not on body fat mass. Clinical Trial Registration: ClinicalTrials.gov, PROSPERO; ID: CRD42020183059.

Keywords: body composition; body fat mass; exercise; lean body mass; muscle strength; whole-body electromyostimulation.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kemmler, Shojaa, Steele, Berger, Fröhlich, Schoene, von Stengel, Kleinöder and Kohl.

Figures

Figure 1
Figure 1
Flow diagram of search process.
Figure 2
Figure 2
Forest plot of meta-analysis results on muscle mass. The data are shown as pooled standard mean differences (SMD) with 95% CI for changes in WB-EMS and control groups.
Figure 3
Figure 3
Funnel plot of the WB-EMS studies that addresses muscle mass.
Figure 4
Figure 4
Forest plot of meta-analysis results on total body fat. The data are shown as pooled standard mean differences (SMD) with 95% CI for changes in WB-EMS and control groups.
Figure 5
Figure 5
Funnel plot of the WB-EMS studies that addresses total body fat mass.
Figure 6
Figure 6
Forest plot of meta-analysis results on maximum leg extension strength. The data are shown as pooled standard mean differences (SMD) with 95% CI for changes in WB-EMS and control groups.
Figure 7
Figure 7
Funnel plot of the WB-EMS studies that addresses maximum leg extension strength.
Figure 8
Figure 8
Forest plot of meta-analysis results on maximum trunk extension strength. The data are shown as pooled standard mean differences (SMD) with 95% CI for changes in WB-EMS and control groups.
Figure 9
Figure 9
Funnel plot of the WB-EMS studies that addresses maximum trunk extension strength.

References

    1. Amaro-Gahete F. J., De-la O. A., Jurado-Fasoli L., Dote-Montero M., Gutierrez A., Ruiz J. R., et al. . (2019a). Changes in physical fitness after 12 weeks of structured concurrent exercise training, high intensity interval training, or whole-body electromyostimulation training in sedentary middle-aged adults: a randomized controlled trial. Front. Physiol. 10:451. 10.3389/fphys.2019.00451
    1. Amaro-Gahete F. J., De-la O. A., Jurado-Fasoli L., Ruiz J. R., Castillo M. J., Gutierrez A. (2019b). Effects of different exercise training programs on body composition: a randomized control trial. Scand. J. Med. Sci. Sports 29, 968–979. 10.1111/sms.13414
    1. Amaro-Gahete F. J., De-la O. A., Sanchez-Delgado G., Robles-Gonzalez L., Jurado-Fasoli L., Ruiz J. R., et al. . (2018a). Functional exercise training and undulating periodization enhances the effect of whole-body electromyostimulation training on running performance. Front. Physiol. 9:720. 10.3389/fphys.2018.00720
    1. Amaro-Gahete F. J., De-la O. A., Sanchez-Delgado G., Robles-Gonzalez L., Jurado-Fasoli L., Ruiz J. R., et al. . (2018b). Whole-body electromyostimulation improves performance-related parameters in runners. Front. Physiol. 9:1576. 10.3389/fphys.2018.01576
    1. Aristizabal J. C., Freidenreich D. J., Volk B. M., Kupchak B. R., Saenz C., Maresh C. M., et al. . (2015). Effect of resistance training on resting metabolic rate and its estimation by a dual-energy X-ray absorptiometry metabolic map. Eur. J. Clin. Nutr. 69, 831–836. 10.1038/ejcn.2014.216
    1. Bauer J., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A. J., Morley J. E., et al. . (2013). Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE study group. J. Am. Med. Dir. Assoc. 14, 542–559. 10.1016/j.jamda.2013.05.021
    1. Bellia A., Ruscello B., Bolognino R., Briotti G., Gabrielli P. R., Silvestri A., et al. . (2020). Whole-body electromyostimulation plus caloric restriction in metabolic syndrome. Int. J. Sports Med. 41, 751–758. 10.1055/a-1171-2003
    1. Boccia G., Fornasiero A., Savoldelli A., Bortolan L., Rainoldi A., Schena F., et al. . (2017). Oxygen consumption and muscle fatigue induced by whole-body electromyostimulation compared to equal-duration body weight circuit training. Sport Sci. Health 13, 121–130. 10.1007/s11332-016-0335-4
    1. Borg G., Borg E. (2010). The Borg CR Scales® Folder. Hasselby, Sweden.
    1. de Morton N. A. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust. J. Physiother. 55, 129–133. 10.1016/S0004-9514(09)70043-1
    1. DGE (German Nutrition Society) (2012). New reference values for vitamin D. Ann. Nutr. Metab. 60, 241–246. 10.1159/000337547
    1. D'Ottavio S., Briotti G., Rosazza C., Partipilo F., Silvestri A., Calabrese C., et al. . (2019). Effects of two modalities of whole-body electrostimulation programs and resistance circuit training on strength and power. Int. J. Sports Med. 40, 831–841. 10.1055/a-0982-3311
    1. Durnin J. V., Womersley J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 32, 77–97. 10.1079/bjn19740060
    1. (2017). EMS-studie 2017: die erste endkundenbefragung (Report). Germany: . Zirndorf.
    1. Filipovic A., DeMarees M., Grau M., Hollinger A., Seeger B., Schiffer T., et al. . (2019). Superimposed whole-body electrostimulation augments strength adaptations and type II myofiber growth in soccer players during a competitive season. Front. Physiol. 10:1187. 10.3389/fphys.2019.01187
    1. Filipovic A., Grau M., Kleinoder H., Zimmer P., Hollmann W., Bloch W. (2016). Effects of a whole-body electrostimulation program on strength, sprinting, jumping, and kicking capacity in elite soccer players. J. Sports Sci. Med. 15, 639–648.
    1. Filipovic A., Kleinoder H., Pluck D., Hollmann W., Bloch W., Grau M. (2015). Influence of whole-body electrostimulation on human red blood cell deformability. J. Strength Cond. Res. 29, 2570–2578. 10.1519/JSC.0000000000000916
    1. Gentil P., Arruda A., Souza D., Giessing J., Paoli A., Fisher J., et al. . (2017). Is there any practical application of meta-analytical results in strength training? Front. Physiol. 8:1. 10.3389/fphys.2017.00001
    1. Higgins J. P. T., Green S. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Available online at: (accessed October 05, 2020).
    1. Jee Y.-S. (2019). The effect of high-impulse-electromyostimulation on adipokine profiles, body composition and strength: a pilot study. J. Isokinetics 27, 163–176. 10.3233/IES-183201
    1. Jee Y. S. (2018). The efficacy and safety of whole-body electromyostimulation in applying to human body: based from graded exercise test. J. Exerc. Rehabil. 14, 49–57. 10.12965/jer.1836022.011
    1. Kemmler W. (2013). Meta-analysis and exercise related sports medicine [Meta-Analysen im trainingswissenschaftlichen und sportmedizinischen Spannungsfeld]. Dt Ztschr Sportmedizin 64, 96–98. 10.5960/dzsm.2012.062
    1. Kemmler W., Bebenek M., Engelke K., von Stengel S. (2014). Impact of whole-body electromyostimulation on body composition in elderly women at risk for sarcopenia: the training and electrostimulation trial (TEST-III). Age 36, 395–406. 10.1007/s11357-013-9575-2
    1. Kemmler W., Birlauf A., von Stengel S. (2010a). Einfluss von ganzkörper-elektromyostimulation auf das metabolische syndrom bei älteren männern mit metabolischem syndrom. Dtsch. Z. Sportmed. 61, 117–123.
    1. Kemmler W., Froehlich M., von Stengel S., Kleinöder H. (2016a). Whole-body electromyostimulation – the need for common sense! Rationale and guideline for a safe and effective training. Dtsch. Z. Sportmed. 67, 218–221. 10.5960/dzsm.2016.246
    1. Kemmler W., Fröhlich M., Pieter A., Mayerl J. (2020a). Evidenz and evidenz-basierte praxis, in Einführung in die Methoden, Methodologie und Statistik im Sport, eds Fröhlich M., Mayerl J., Pieter A., Kemmler W. (Berlin: Springer-Verlag; ), 109–128. 10.1007/978-3-662-61039-8_10
    1. Kemmler W., Grimm A., Bebenek M., Kohl M., von Stengel S. (2018a). Effects of combined whole-body electromyostimulation and protein supplementation on local and overall muscle/fat distribution in older men with sarcopenic obesity: the randomized controlled franconia sarcopenic obesity (FranSO) study. Calcif. Tissue Int. 103, 266–277. 10.1007/s00223-018-0424-2
    1. Kemmler W., Kleinoder H., Frohlich M. (2020b). Editorial: whole-body electromyostimulation: a training technology to improve health and performance in humans? Front. Physiol. 11:523. 10.3389/fphys.2020.00523
    1. Kemmler W., Kohl M., Freiberger E., Sieber C., von Stengel S. (2018b). Effect of whole-body electromyostimulation and/or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: the randomized controlled FranSO trial. BMC Geriatr. 18:70. 10.1186/s12877-018-0759-6
    1. Kemmler W., Schliffka R., Mayhew J. L., von Stengel S. (2010b). Effects of whole-body-electromyostimulation on resting metabolic rate, anthropometric and neuromuscular parameters in the elderly. The training and electrostimulation trial (TEST). J. Strength Cond. Res. 24, 1880–1886. 10.1519/JSC.0b013e3181ddaeee
    1. Kemmler W., Teschler M., Von Stengel S. (2015). Effekt von Ganzkörper-elektromyostimulation – “A series of studies”. Osteologie 23, 20–29. 10.1055/s-0037-1622035
    1. Kemmler W., Teschler M., Weissenfels A., Bebenek M., Frohlich M., Kohl M., et al. . (2016b). Effects of whole-body electromyostimulation versus high-intensity resistance exercise on body composition and strength: a randomized controlled study. Evid. Based Complement. Alternat. Med. 2016:9236809. 10.1155/2016/9236809
    1. Kemmler W., Teschler M., Weissenfels A., Bebenek M., von Stengel S., Kohl M., et al. . (2016c). Whole-body electromyostimulation to fight sarcopenic obesity in community-dwelling older women at risk. Results of the randomized controlled FORMOsA-sarcopenic obesity study. Osteo Int. 27, 3261–3270. 10.1007/s00198-016-3662-z
    1. Kemmler W., Teschler M., Weissenfels A., Willert S., Bebenek M., von Stengel S. (2017a). Whole-body EMS to fight sarcopenic obesity – a review with emphasis on body fat. Dt. Ztschr. Sportmedizin. 68, 170–176. 10.5960/dzsm.2017.287
    1. Kemmler W., von Stengel S. (2013). Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin. Interv. Aging 8, 1353–1364. 10.2147/CIA.S52337
    1. Kemmler W., von Stengel S., Engelke K., Haberle L., Mayhew J. L., Kalender W. A. (2010c). Exercise, body composition, and functional ability: a randomized controlled trial. Am. J. Prev. Med. 38, 279–287. 10.1016/j.amepre.2009.10.042
    1. Kemmler W., Von Stengel S., Schwarz J., Mayhew J. L. (2012). Effect of whole-body electromyostimulation on energy expenditure during exercise. J. Strength Cond. Res. 26, 240–245. 10.1519/JSC.0b013e31821a3a11
    1. Kemmler W., von Stengel S., Teschler M., Weissenfels A., Bebenek M., Freiberger E., et al. . (2017b). Ganzkörper-elektromyostimulation, sarkopenie und adipositas. Ergebnisse der randomisierten kontrollierten “franconia sarcopenic obesity study” (FRANSO). Osteoporose Rheuma Aktuell. 15, 12–18.
    1. Kemmler W., von Stengel S., Teschler M., Weissenfels A., Bebenek M., Kohl M., et al. . (2016d). Ganzkörper-elektromyostimulation und sarcopenic obesity. Ergebnisse der randomisierten kontrollierten FORMOsA-sarcopenic obesity studie. Osteologie 25, 204–211 10.1055/s-0037-1619018
    1. Kim J., Jee Y. (2020). EMS-effect of exercises with music on fatness and biomarkers of obese elderly women. Medicina 56:156. 10.3390/medicina56040158
    1. Lancha A. H. Jr Zanella R. Jr Tanabe S. G. Andriamihaja M. Blachier F. (2017). Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids 49, 33–47. 10.1007/s00726-016-2355-4
    1. Ludwig O., Berger J., Becker S., Kemmler W., Frohlich M. (2019). The impact of whole-body electromyostimulation on body posture and trunk muscle strength in untrained persons. Front. Physiol. 10:1020. 10.3389/fphys.2019.01020
    1. Ludwig O., Berger J., Schuh T., Backfisch M., Becker S., Frohlich M. (2020). Can a superimposed whole-body electromyostimulation intervention enhance the effects of a 10-week athletic strength training in youth elite soccer players? J. Sports Sci. Med. 19, 535–546.
    1. Micke F., Kleinoder H., Dormann U., Wirtz N., Donath L. (2018). Effects of an eight-week superimposed submaximal dynamic whole-body electromyostimulation training on strength and power parameters of the leg muscles: a randomized controlled intervention study. Front. Physiol. 9:1719. 10.3389/fphys.2018.01719
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269. 10.7326/0003-4819-151-4-200908180-00135
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. . (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4:1. 10.1186/2046-4053-4-1
    1. Pano-Rodriguez A., Beltran-Garrido J. V., Hernandez-Gonzalez V., Nasarre-Nacenta N., Reverter-Masia J. (2020a). Impact of whole body electromyostimulation on velocity, power and body composition in postmenopausal women: a randomized controlled trial. Int. J. Environ. Res. Public Health 17:4982. 10.3390/ijerph17144982
    1. Pano-Rodriguez A., Beltran-Garrido J. V., Hernandez-Gonzalez V., Reverter-Masia J. (2019). Effects of whole-body electromyostimulation on health and performance: a systematic review. BMC Complement. Altern. Med. 19:87. 10.1186/s12906-019-2485-9
    1. Pano-Rodriguez A., Beltran-Garrido J. V., Hernandez-Gonzalez V., Reverter-Masia J. (2020b). Effects of whole-body electromyostimulation on physical fitness in postmenopausal women: a randomized controlled trial. Sensors 20:1482. 10.3390/s20051482
    1. Peterson M. D., Sen A., Gordon P. M. (2011). Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med. Sci. Sports Exerc. 43, 249–258. 10.1249/MSS.0b013e3181eb6265
    1. R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at:
    1. Ricci P. A., Di Thommazo-Luporini L., Jurgensen S. P., Andre L. D., Haddad G. F., Arena R., et al. . (2020). Effects of whole-body electromyostimulation associated with dynamic exercise on functional capacity and heart rate variability after bariatric surgery: a randomized, double-blind, and sham-controlled trial. Obes. Surg. 30, 3862–3871. 10.1007/s11695-020-04724-9
    1. Schink K., Herrmann H. J., Schwappacher R., Meyer J., Orlemann T., Waldmann E., et al. . (2018). Effects of whole-body electromyostimulation combined with individualized nutritional support on body composition in patients with advanced cancer: a controlled pilot trial. BMC Cancer 18:886. 10.1186/s12885-018-4790-y
    1. Seyri K., Maffiuletti N. A. (2019). Effect of electromyostimulation training on muscle strength and sports performance. Strength Cond. J. 33, 70–75. 10.1519/SSC.0b013e3182079f11
    1. Shea B. J., Reeves B. C., Wells G., Thuku M., Hamel C., Moran J., et al. . (2017). AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008. 10.1136/bmj.j4008
    1. Sherrington C., Herbert R. D., Maher C. G., Moseley A. M. (2000). PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man. Ther. 5, 223–226. 10.1054/math.2000.0372
    1. Smart N. A., Waldron M., Ismail H., Giallauria F., Vigorito C., Cornelissen V., et al. . (2015). Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int. J. Evid. Based Healthc. 13, 9–18. 10.1097/XEB.0000000000000020
    1. Sterne J. A., Sutton A. J., Ioannidis J. P., Terrin N., Jones D. R., Lau J., et al. . (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002. 10.1136/bmj.d4002
    1. Teschler M., Wassermann A., Weissenfels A., Frohlich M., Kohl M., Bebenek M., et al. . (2018). Short time effect of a single session of intense whole-body electromyostimulation on energy expenditure. A contribution to fat reduction? Appl. Physiol. Nutr. Metab. 43, 528–530. 10.1139/apnm-2017-0602
    1. Vatter J. (2003). Der einsatz elektrischer muskelstimulation als ganzkörpertraining im fitness-studio - eine multicenter-studie zum bodytransformer (Master-Thesis). Bayreuth: University of Bayreuth.
    1. Vatter J. (2010). Elektrische Muskelstimulation als Ganzkörpertraining - Multicenterstudie zum Einsatz von Ganzkörper-EMS im Fitness-Studio. München: AVM-Verlag.
    1. Viechtbauer W. (2010). Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. 10.18637/jss.v036.i03
    1. Weissenfels A., Teschler M., Willert S., Hettchen M., Frohlich M., Kleinoder H., et al. . (2018). Effects of whole-body electromyostimulation on chronic nonspecific low back pain in adults: a randomized controlled study. J. Pain Res. 11, 1949–1957. 10.2147/JPR.S164904
    1. Willert S., Weissenfels A., Kohl M., von Stengel S., Fröhlich M., Kleinöder H., et al. . (2019). Effects of whole-body electromyostimulation (WB-EMS) on the energy-restriction-induced reduction of muscle mass during intended weight loss. Front. Physiol. 10:1012. 10.3389/fphys.2019.01012
    1. Wirtz N., Dormann U., Micke F., Filipovic A., Kleinoder H., Donath L. (2019). Effects of whole-body electromyostimulation on strength-, sprint-, and jump performance in moderately trained young adults: a mini-meta-analysis of five homogenous RCTs of our work group. Front. Physiol. 10:1336. 10.3389/fphys.2019.01336
    1. Wirtz N., Zinner C., Doermann U., Kleinoeder H., Mester J. (2016). Effects of loaded squat exercise with and without application of superimposed EMS on physical performance. J. Sports Sci. Med. 15, 26–33.

Source: PubMed

3
Abonner