Pharmacogenetics of Anticoagulation and Clinical Events in Warfarin-Treated Patients: A Register-Based Cohort Study with Biobank Data and National Health Registries in Finland

Anna-Leena Vuorinen, Mika Lehto, Mikko Niemi, Kari Harno, Juha Pajula, Mark van Gils, Jaakko Lähteenmäki, Anna-Leena Vuorinen, Mika Lehto, Mikko Niemi, Kari Harno, Juha Pajula, Mark van Gils, Jaakko Lähteenmäki

Abstract

Purpose: To assess the association between VKORC1 and CYP2C9 variants and the incidence of adverse drug reactions in warfarin-treated patients in a real-world setting.

Materials and methods: This was a register-based cohort study (PreMed) linking data from Finnish biobanks, national health registries and patient records between January 1st 2007 and June 30th 2018. The inclusion criteria were: 1) ≥18 years of age, 2) CYP2C9 and VKORC1 genotype information available, 3) a diagnosis of a cardiovascular disease, 4) at least one warfarin purchase, 5) regular INR tests. Eligible individuals were divided into two warfarin sensitivity groups; normal responders, and sensitive and highly sensitive responders based on their VKORC1 and CYP2C9 genotypes. The incidences of clinical events were compared between the groups using Cox regression models.

Results: The cohort consisted of 2508 participants (45% women, mean age of 69 years), of whom 65% were categorized as normal responders and 35% sensitive or highly sensitive responders. Compared to normal responders, sensitive and highly sensitive responders had fewer INR tests below 2 (median: 33.3% vs 43.8%, 95% CI: -13.3%, -10.0%) and more above 3 (median: 18.2% vs 6.7%, 95% Cl: 8.3%, 10.8%). The incidence (per 100 patient-years) of bleeding outcomes was 5.4 for normal responders and 5.6 for the sensitive and highly sensitive responder group (HR=1.03, 95% CI: 0.74, 1.44). The incidence of thromboembolic outcomes was 4.9 and 7.8, respectively (HR=1.48, 95% CI: 1.08, 2.03).

Conclusion: In a real-world setting, genetically sensitive and highly sensitive responders to warfarin had more high INR tests and required a lower daily dose of warfarin than normal responders. However, the risk for bleeding events was not increased in sensitive and highly sensitive responders. Interestingly, the risk of thromboembolic outcomes was lower in normal responders compared to the sensitive and highly sensitive responders.

Trial registration: NCT04001166.

Keywords: CYP2C9; INR; VKORC1; bleeding; pharmacogenomics; warfarin.

Conflict of interest statement

Dr Juha Pajula, Dr Mark Van Gils, and Mr Jaakko Lahteenmaki reports grant from Business Finland, grants from Oy Karl Fazer AB, grants from Novartis Finland Oy, grants from Pfizer Oy, grants from Roche Diagnostics Oy, grants from Avaintec Oy, grants from Crown CRO Oy, grants from Mediconsult Oy, grants from Biobank Cooperative Finland, outside the submitted work. The authors declare that they have no other competing interests in this work.

© 2021 Vuorinen et al.

Figures

Figure 1
Figure 1
Participant recruitment and eligibility.
Figure 2
Figure 2
Cumulative incidence of bleeding events.
Figure 3
Figure 3
Cumulative incidence of thromboembolic events.

References

    1. Johnson JA, Gong L, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–629. doi:10.1038/clpt.2011.185
    1. Yang J, Chen Y, Li X, et al. Influence of CYP2C9 and VKORC1 genotypes on the risk of hemorrhagic complications in warfarin-treated patients: a systematic review and meta-analysis. Int J Cardiol. 2013;168(4):4234–4243. doi:10.1016/j.ijcard.2013.07.151
    1. Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. N Engl J Med. 2011;365(21):2002–2012. doi:10.1056/NEJMsa1103053
    1. Shehab N, Lovegrove MC, Geller AI, Rose KO, Weidle NJ, Budnitz DS. US Emergency department visits for outpatient adverse drug events, 2013–2014. JAMA. 2016;316(20):2115. doi:10.1001/jama.2016.16201
    1. Lapatto-Reiniluoto O, Patinen L, Niemi M, Backman JT, Neuvonen PJ. Drug-related inadvertent deaths in a university hospital - a declining trend. Basic Clin Pharmacol Toxicol. 2015;117(6):421–426. doi:10.1111/bcpt.12435
    1. Johnson JA, Cavallari LH. Warfarin pharmacogenetics. Trends Cardiovasc Med. 2015;25(1):33–41. doi:10.1016/j.tcm.2014.09.001
    1. Johnson JA, Caudle KE, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for pharmacogenetics-guided warfarin dosing: 2017 Update. Clin Pharmacol Ther. 2017;102(3):397–404. doi:10.1002/cpt.668
    1. Wadelius M, Chen LY, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113(4):784–792. doi:10.1182/blood-2008-04-149070
    1. Hindrics G, Potpara T, Dagres N, et al. ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2020. doi:10.1093/eurheartj/ehaa612
    1. Vandell AG, Walker J, Brown KS, et al. Genetics and clinical response to warfarin and edoxaban in patients with venous thromboembolism. Heart. 2017;103(22):1800–1805. doi:10.1136/heartjnl-2016-310901
    1. Mega JL, Walker JR, Ruff CT, et al. Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385(9984):2280–2287. doi:10.1016/S0140-6736(14)61994-2
    1. Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717–719. doi:10.1016/S0140-6736(98)04474-2
    1. Pirmohamed M, Burnside G, Eriksson N, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–2303. doi:10.1056/NEJMoa1311386
    1. Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283–2293. doi:10.1056/NEJMoa1310669
    1. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. Novelli Ged. PLoS One. 2012;7(8):e44064. doi:10.1371/journal.pone.0044064
    1. Epstein RS, Moyer TP, Aubert RE, et al. Warfarin genotyping reduces hospitalization rates. J Am Coll Cardiol. 2010;55(25):2804–2812. doi:10.1016/j.jacc.2010.03.009
    1. Gage BF, Bass AR, Lin H, et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT Randomized clinical trial. JAMA. 2017;318(12):1115–1124. doi:10.1001/jama.2017.11469
    1. Carnes CA. What is the role of pharmacogenetics in optimization of warfarin dosing? Trends Cardiovasc Med. 2015;25(1):42–43. doi:10.1016/J.TCM.2014.10.003
    1. Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690. doi:10.1001/jama.287.13.1690
    1. Ruff CT. Pharmacogenetics of Warfarin Therapy. Clin Chem. 2018;64(11):1558–1559. doi:10.1373/clinchem.2017.284927
    1. Yang T, Zhou Y, Chen C, Lu M, Ma L, Cui Y. Genotype-guided dosing versus conventional dosing of warfarin: a meta-analysis of 15 randomized controlled trials. J Clin Pharm Ther. 2019;44(2):197–208. doi:10.1111/jcpt.12782
    1. Limdi N, McGwin G, Goldstein J, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in african-american and european-american patients on warfarin. Clin Pharmacol Ther. 2008;83(2):312. doi:10.1038/SJ.CLPT.6100290
    1. Swanson KM, Zhu Y, Rojas RL, et al. Comparing outcomes and costs among warfarin-sensitive patients versus warfarin-insensitive patients using the right drug, right dose, right time: using genomic data to individualize treatment (RIGHT) 10K warfarin cohort. PLoS One. 2020;15:5. doi:10.1371/JOURNAL.PONE.0233316
    1. Ogg MS, Brennan P, Meade T, Humphries SE. CYP2C9*3 allelic variant and bleeding complications. Lancet. 1999;354(9184):1124. doi:10.1016/S0140-6736(05)76918-X
    1. Schwarz UI, Ritchie MD, Bradford Y, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358(10):999–1008. doi:10.1056/NEJMoa0708078
    1. Tomek A, Maťoška V, Kolářová T, et al. The bleeding risk during warfarin therapy is associated with the number of variant alleles of CYP2C9 and VKORC1 genes. Cardiology. 2013;125:3. doi:10.1159/000350407
    1. FinnGen research project. . Accessed September19, 2020.
    1. Borodulin K, Vartiainen E, Peltonen M, et al. Forty-year trends in cardiovascular risk factors in Finland. Eur J Public Health. 2015;25(3):539–546. doi:10.1093/eurpub/cku174
    1. Aromaa A, Koskinen S. Health and Functional Capacity in Finland: Baseline Results of the Health 2000 Health Examination Survey. Helsinki: KTL, National Public Health Institute Finland; 2004. .
    1. Rosendaal F, Cannegieter S, van der Meer F, Briët E. A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost. 1993;69(3):236–239. doi:10.1055/s-0038-1651587
    1. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi:10.7326/0003-4819-150-9-200905050-00006
    1. Lehto M, Niiranen J, Korhonen P, et al. Quality of warfarin therapy and risk of stroke, bleeding, and mortality among patients with atrial fibrillation: results from the nationwide FinWAF registry. Pharmacoepidemiol Drug Saf. 2017;26(6):657–665. doi:10.1002/pds.4194
    1. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics. 2009;19(2):170–179. doi:10.1097/FPC.0b013e32831ebb30
    1. Finnish biobank Act (688/2012). . Accessed September19, 2020.
    1. Gateman D, Trojnar ME, Agarwal G. Time in therapeutic range: warfarin anticoagulation for atrial fibrillation in a community-based practice. Can Fam Physician. 2017;63:e425–e431.
    1. Wadelius M, Sörlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 2004;4(1):40–48. doi:10.1038/sj.tpj.6500220
    1. Biss TT, Avery PJ, Williams MD, Brandão LR, Grainger JD. The VKORC1 and CYP2C9 genotypes are associated with over-anticoagulation during initiation of warfarin therapy in children. J Thromb Haemost. 2013;11(2):373–375. doi:10.1111/jth.12072
    1. Baker WL, Johnson SG. Pharmacogenetics and oral antithrombotic drugs. Curr Opin Pharmacol. 2016;27:38–42. doi:10.1016/J.COPH.2016.01.008
    1. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One. 2012;7:8. doi:10.1371/journal.pone.0044064
    1. Roth JA, Boudreau D, Fujii MM, et al. Genetic risk factors for major bleeding in patients treated with warfarin in a community setting. Clin Pharmacol Ther. 2014;95(6):636–643. doi:10.1038/clpt.2014.26
    1. Park YK, Lee MJ, Kim JH, et al. Genetic and non-genetic factors affecting the quality of anticoagulation control and vascular events in atrial fibrillation. J Stroke Cerebrovasc Dis. 2017;26(6):1383–1390. doi:10.1016/j.jstrokecerebrovasdis.2017.02.022
    1. Furu K, Wettermark B, Andersen M, Martikainen JE, Almarsdottir AB, Sørensen HT. The nordic countries as a cohort for pharmacoepidemiological research. Basic Clin Pharmacol Toxicol. 2010;106(2):86–94. doi:10.1111/j.1742-7843.2009.00494.x
    1. Rapola JM, Virtamo J, Korhonen P, et al. Validity of diagnoses of major coronary events in national registers of hospital diagnoses and deaths in Finland. Eur J Epidemiol. 1997;13(2):133–138. doi:10.1023/A:1007380408729
    1. Meckley LM. An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients. Thromb Haemost. 2008;100(2):229–239. doi:10.1160/TH07-09-0552
    1. Jonas DE, McLeod HL. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol Sci. 2009;30(7):375–386. doi:10.1016/j.tips.2009.05.001

Source: PubMed

3
Abonner