Effectiveness of a Central Discharge Element Sock for Plantar Temperature Reduction and Improving Comfort

Alfonso Martínez-Nova, Víctor Manuel Jiménez-Cano, Juan Miguel Caracuel-López, Beatriz Gómez-Martín, Elena Escamilla-Martínez, Raquel Sánchez-Rodríguez, Alfonso Martínez-Nova, Víctor Manuel Jiménez-Cano, Juan Miguel Caracuel-López, Beatriz Gómez-Martín, Elena Escamilla-Martínez, Raquel Sánchez-Rodríguez

Abstract

U-shaped plantar cushions could help reduce stress affecting the central forefoot without the need for an orthosis, but they are yet to be integrated as an element in socks. The objective of this study was to verify the effectiveness of a sock with a central discharge element in terms of plantar temperature and comfort. The sample comprised 38 subjects (13 men and 25 women). Their plantar temperatures were measured with a thermographic camera in a basal situation and after each of two 10-minute walks around an indoor circuit during which they wore either control or experimental socks at random (the same design, weight, and fiber, but with the plantar cushioning element added). After the walks, each subject responded to a comfort questionnaire (five-point Likert scale), blindly scoring the two socks. The highest temperatures (28.3 ± 2.7 °C) were recorded in the zone of the second and third metatarsal heads. With the experimental socks, the observed temperature increase in the central forefoot zone was significantly less than with the control socks (31.6 vs. 30.6 °C, p = 0.001). The subjects found the experimental socks to be more comfortable than the controls (4.63 ± 0.5 vs. 4.03 ± 0.5, p < 0.001). The discharge element included in the experimental socks was effective since it reduced the contact zones and excess friction with the ground, thereby lessening overheating by more than 1 °C. Furthermore, the experimental socks were perceived as being more comfortable by the subjects who had mild and occasional foot discomfort.

Trial registration: ClinicalTrials.gov NCT04697914.

Keywords: comfort; foot; foot posture; health; skin care; socks.

Conflict of interest statement

The authors declare no conflict of interest. The company MLS Textiles 1992, manufacturer of the LURBEL socks, has selflessly manufactured and loaned the experimental socks to the authors. We deeply appreciate this support and the spirit of research, development and innovation shown by the company. There is no economic link between the company and any of the authors of the study.

Figures

Figure 1
Figure 1
Detail of the two socks, control (left) and experimental (right).
Figure 2
Figure 2
Metatarsal cushioning of the experimental sock.
Figure 3
Figure 3
Thermographic image. Detail of the black background (top, right), with the anatomical zones analyzed. The software yields the upper, lower, and mean temperatures for each zone.

References

    1. Niedermeier M., Einwanger J., Hartl A., Kopp M. Affective responses in mountain hiking—A randomized crossover trial focusing on differences between indoor and outdoor activity. PLoS ONE. 2017;12:e177719. doi: 10.1371/journal.pone.0177719.
    1. Chicharro-Luna E., Martínez-Nova A., Ortega-Ávila A.B., Requena-Martínez A., Gijón-Noguerón G. Prevalence and risk factors associated with the formation of dermal lesions on the foot during hiking. J. Tissue Viabil. 2020;29:218–223. doi: 10.1016/j.jtv.2020.04.002.
    1. Maceira E., Monteagudo M. Mechanical Basis of Metatarsalgia. Foot Ankle Clin. 2019;24:571–584. doi: 10.1016/j.fcl.2019.08.008.
    1. Besse J.L. Orthopaedics and Traumatology: Surgery and Research. Volume 103. Elsevier Masson SAS; Barcelona, Spain: 2017. Metatarsalgia; pp. S29–S39.
    1. Putti A.B., Arnold G.P., Cochrane L.A., Abboud R.J. Normal pressure values and repeatability of the Emed® ST4 system. Gait Posture. 2008;27:501–505. doi: 10.1016/j.gaitpost.2007.06.009.
    1. Espinosa N., Brodsky J.W., Maceira E. Metatarsalgia. J. Am. Acad. Orthop. Surg. 2010;18:474–485. doi: 10.5435/00124635-201008000-00004.
    1. Chang B.C., Liu D.H., Chang J.L., Lee S.H., Wang J.Y. Plantar pressure analysis of accommodative insole in older people with metatarsalgia. Gait Posture. 2014;39:449–454. doi: 10.1016/j.gaitpost.2013.08.027.
    1. Nordsiden L., Van Lunen B.L., Walker M.L., Cortes N., Pasquale M., Onate J.A. The effect of 3 foot pads on plantar pressure of pes planus foot type. J. Sport Rehabil. 2010;19:71–85. doi: 10.1123/jsr.19.1.71.
    1. Männikkö K., Sahlman J. The Effect of Metatarsal Padding on Pain and Functional Ability in Metatarsalgia. Scand. J. Surg. 2017;106:332–337. doi: 10.1177/1457496916683090.
    1. Nieto-García E., Ferrer-Torregrosa J., Ramírez-Andrés L., Nieto-González E., Martinez-Nova A., Barrios C. The impact of associated tenotomies on the outcome of incomplete phalangeal osteotomies for lesser toe deformities. J. Orthop. Surg. Res. 2019;14:308. doi: 10.1186/s13018-019-1353-0.
    1. Zimny S., Schatz H., Pfohl U. The effects of applied felted foam on wound healing and healing times in the therapy of neuropathic diabetic foot ulcers. Diabet. Med. 2003;20:622–625. doi: 10.1046/j.1464-5491.2003.01011.x.
    1. Gatt A., Briffa A., Chockalingam N., Formosa C. The applicability of plantar padding in reducing peak plantar pressure in the forefeet of healthy adults: Implications for the foot at risk. J. Am. Podiatr. Med. Assoc. 2016;106:246–251. doi: 10.7547/15-025.
    1. Hähni M., Hirschmüller A., Baur H. The effect of foot orthoses with forefoot cushioning or metatarsal pad on forefoot peak plantar pressure in running. J. Foot Ankle Res. 2016;9:44. doi: 10.1186/s13047-016-0176-z.
    1. Baussan E., Bueno M., Rossi R., Derler S. Analysis of current running sock structures with regard to blister prevention. Textile Res. J. 2013;83:836–848. doi: 10.1177/0040517512461698.
    1. Soltanzadeh Z., Shaikhzadeh Najar S., Haghpanahi M., Mohajeri-Tehrani M.R. Effect of socks structures on plantar dynamic pressure distribution. Proc. Inst. Mech. Eng. H. 2016;230:1043–1050. doi: 10.1177/0954411916671544.
    1. Soltanzadeh Z., Shaikhzadehnajar S., Haghpanahi M., Mohajeri-Tehrani M.R. Plantar static pressure distribution in normal feet using cotton socks with different structures. J. Am. Podiatr. Med. Assoc. 2017;107:30–38. doi: 10.7547/14-085.
    1. Martínez-Nova A., Sánchez-Rodríguez R., Gómez-Martín B., Escamilla Martínez E. Calcetín de Alivio Metatarsal. ES 1247681 U. Patent. 2020 Apr 23;
    1. Cholewka A., Drzazga Z., Sieron A., Stanek A., Knefel G., Kawecki M., Nowak M. Some applications of thermal imaging in medicine in some aspects of medical physics—in vivo and in vitro studies. Pol. J. Environ. Stud. 2010;1:51–58.
    1. El-Nahas M., El-Shazly S., El-Gamel F., Motawea M., Kyrillos F., Idrees H. Relationship between skin temperature monitoring with Smart Socks and plantar pressure distribution: A pilot study. J. Wound Care. 2018;27:536–541. doi: 10.12968/jowc.2018.27.8.536.
    1. Yavuz M., Brem R.W., Davis B.L., Patel J., Osbourne A., Matassini M.R., Wood D.A., Nwokolo I.O. Temperature as a predictive tool for plantar triaxial loading. J. Biomech. 2014;47:3767–3770. doi: 10.1016/j.jbiomech.2014.09.028.
    1. Escamilla-Martínez E., Gómez-Martín B., Sánchez-Rodríguez R., Fernández-Seguín L.M., Pérez-Soriano P., Martínez-Nova A. Running thermoregulation effects using bioceramics versus polyester fibres socks. J. Ind. Text. 2020:152808371989885. doi: 10.1177/1528083719898850.
    1. Baic A., Kasprzyk T., Rżany M., Stanek A., Sieroń K., Suszyński K., Marcol W., Cholewka A. Can we use thermal imaging to evaluate the effects of carpal tunnel syndrome surgical decompression? Medicine. 2017;1:96. doi: 10.1097/MD.0000000000007982.
    1. Gatt A., Formosa C., Cassar K., Camilleri K.P., De Raffaele C., Mizzi A., Azzopardi C., Mizzi S., Falzon O., Cristina S., et al. Thermographic Patterns of the Upper and Lower Limbs: Baseline Data. Int. J. Vasc. Med. 2015;2015:831369. doi: 10.1155/2015/831369.
    1. Kasprzyk-Kucewicz T., Cholewka A., Bałamut K., Kownacki P., Kaszuba N., Kaszuba M., Stanek A., Sieroń K., Stransky J., Pasz A., et al. The applications of infrared thermography in surgical removal of retained teeth effects assessment. J. Therm. Anal. Calorim. 2021;144:139–144. doi: 10.1007/s10973-020-09457-6.
    1. Menz H.B. Two feet, or one person? Problems associated with statistical analysis of paired data in foot and ankle medicine. Foot. 2004;14:2–5. doi: 10.1016/S0958-2592(03)00047-6.
    1. Watanabe R., Kajimoto H. Effect of Dynamic Temperature Stimulus to Plantar Surface of the Foot in the Standing Position. Front. Bioeng. Biotechnol. 2016;21:4–88. doi: 10.3389/fbioe.2016.00088.
    1. Buldt A.K., Forghany S., Landorf K.B., Levinger P., Murley G.S., Menz H.B. Foot posture is associated with plantar pressure during gait: A comparison of normal, planus and cavus feet. Gait Posture. 2018;62:235–240. doi: 10.1016/j.gaitpost.2018.03.005.
    1. Mori T., Nagase T., Takehara K., Oe M., Ohashi Y., Amemiya A., Noguchi H., Ueki K., Kadowaki T., Sanada H. Morphological pattern classification system for plantar thermography of patients with diabetes. J. Diabetes Sci. Technol. 2013;7:1102–1112. doi: 10.1177/193229681300700502.
    1. Reddy P.N., Cooper G., Weightman A., Hodson-Tole E., Reeves N.D. Walking cadence affects rate of plantar foot temperature change but not final temperature in younger and older adults. Gait Posture. 2016;52:272–279. doi: 10.1016/j.gaitpost.2016.12.008.
    1. Cazzaniga S., Scocco G.L., Schincaglia E., Mercuri S.R., Chimenti S., Saraceno R., Naldi L. Clinical Trial Comparing Fluorine-Synthetic Fiber Socks with Standard Cotton Socks in Improving Plantar Pustulosis. Dermatology. 2014;228:166–171. doi: 10.1159/000357221.
    1. Aparicio I., Giménez J.V., Pérez-Soriano P., Martínez-Nova A., Macián C., Llana S. Evaluación de tecnología regenactiv en calcetines durante la marcha nórdica. Eur. J. Hum. Movem. 2012;28:101–110.
    1. Zatcoff R.C., Smith M.S., Borkow G. Treatment of tinea pedis with socks containing copper-oxide impregnated fibers. Foot. 2008;18:136–141. doi: 10.1016/j.foot.2008.03.005.
    1. Liu H., Lee Y.-Y., Norsten T.B., Chong K. In situ formation of anti-bacterial silver nanoparticles on cotton textiles. J. Ind. Text. 2013;44:198–210. doi: 10.1177/1528083713481833.
    1. Martínez Nova A., Marcos-Tejedor F., Gómez Martín B., Sánchez-Rodríguez R., Escamilla-Martínez E. Bioceramic-fiber socks have more benefits than cotton-made socks in controlling bacterial load and the increase of sweat in runners. Text. Res. J. 2018;88:696–703. doi: 10.1177/0040517516688631.
    1. Borkow G., Zatcoff R.C., Gabbay J. Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med. Hypotheses. 2009;73:883–886. doi: 10.1016/j.mehy.2009.02.050.
    1. Pico A.M.P., Álvarez E.M., Quintana R.M., Acevedo R.M. Importance of sock type in the development of foot lesions on low-difficulty, short hikes. Int. J. Environ. Res. Public Health. 2019;16:1871. doi: 10.3390/ijerph16101871.
    1. Pérez Pico A.M., Mingorance Álvarez E., Caballé Cervigón N., Mayordomo Acevedo R. Importance of Preexisting Physical Factors in the Development of Dermatological and Muscular Lesions During Hiking. Int. J. Low Extrem. Wounds. 2019;18:161–170. doi: 10.1177/1534734619845600.
    1. Nieto-Gil M.P., Ortega-Avila A.B., Pardo-Rios M., Gijon-Nogueron G. Effectiveness and duration of plantar pressure off-loading by two designs of felt padding: A preliminary study. J. Am. Podiatr. Med. Assoc. 2019;109:431–436. doi: 10.7547/17-146.
    1. Pascual-huerta J. S-Plasty for excision of a circular lession of the hallux: A case report. Rev. Esp. Podol. 2018;29:94–100. doi: 10.20986/revesppod.2018/1525/2018.
    1. Llopart Lobato L., Ruiz Arredondo D. Descargas Provisionales. Rev. Esp. Podol. 1998;9:127–157.

Source: PubMed

3
Abonner