A randomized, controlled trial of alpha-rhythm EEG neurofeedback in posttraumatic stress disorder: A preliminary investigation showing evidence of decreased PTSD symptoms and restored default mode and salience network connectivity using fMRI

Andrew A Nicholson, Tomas Ros, Maria Densmore, Paul A Frewen, Richard W J Neufeld, Jean Théberge, Rakesh Jetly, Ruth A Lanius, Andrew A Nicholson, Tomas Ros, Maria Densmore, Paul A Frewen, Richard W J Neufeld, Jean Théberge, Rakesh Jetly, Ruth A Lanius

Abstract

Objective: The default-mode network (DMN) and salience network (SN) have been shown to display altered connectivity in posttraumatic stress disorder (PTSD). Restoring aberrant connectivity within these networks with electroencephalogram neurofeedback (EEG-NFB) has been shown previously to be associated with acute decreases in symptoms. Here, we conducted a double-blind, sham-controlled randomized trial of alpha-rhythm EEG-NFB in participants with PTSD (n = 36) over 20-weeks. Our aim was to provide mechanistic evidence underlying clinical improvements by examining changes in network connectivity via fMRI.

Methods: We randomly assigned participants with a primary diagnosis of PTSD to either the experimental group (n = 18) or sham-control group (n = 18). We collected resting-state fMRI scans pre- and post-NFB intervention, for both the experimental and sham-control PTSD groups. We further compared baseline brain connectivity measures pre-NFB to age-matched healthy controls (n = 36).

Results: With regard to the primary outcome measure of PTSD severity, we found a significant main effect of time in the absence of a group × time interaction. Nevertheless, we found significantly decreased PTSD severity scores in the experimental NFB group only, when comparing post-NFB (dz = 0.71) and 3-month follow-up scores (dz = 0.77) to baseline measures. Interestingly, we found evidence to suggest a shift towards normalization of DMN and SN connectivity post-NFB in the experimental group only. Both decreases in PTSD severity and NFB performance were correlated to DMN and SN connectivity post-NFB in the experimental group. Critically, remission rates of PTSD were significant higher in the experimental group (61.1%) as compared to the sham-control group (33.3%).

Conclusion: The current study shows mechanistic evidence for therapeutic changes in DMN and SN connectivity that are known to be associated with PTSD psychopathology with no patient dropouts. This preliminary investigation merits further research to demonstrate fully the clinical efficacy of EEG-NFB as an adjunctive therapy for PTSD.

Keywords: Connectivity; Default mode network; Neurofeedback; PTSD; Salience network; fMRI.

Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Neurofeedback experimental design with pre- and post-intervention resting-state fMRI scans. All PTSD patients were compared to healthy controls at baseline with regard to resting-state fMRI network connectivity. PTSD patients were randomly allocated in a double-blind manner to either the active experimental group or sham-control group. Pre- versus post-intervention changes in resting-state fMRI network connectivity was compared for the experimental and sham-control groups. Here, all resting-state fMRI connectivity analyses consisted of group comparisons with regard to the data driven DMN and SN networks generated from the independent component analysis (spatial depiction of networks shown in the lower right panel). Clinical information was collected at baseline, post-intervention and at 3-month follow-up. Acronyms: EEG-NFB = electroencephalogram neurofeedback intervention, PTSD = posttraumatic stress disorder, RSNs = resting-state networks, DMN = default mode network, SN = salience network.
Fig. 2
Fig. 2
The primary outcome measure of PTSD severity (CAPS) changed significantly over the NFB-intervention for the experimental NFB group only as compared to baseline measures. No significant changes were detected for the sham-control group over the NFB-intervention as compared to baseline measures. Acronyms: Exp = experimental neurofeedback PTSD group, Sham = sham-control PTSD group, PTSD = posttraumatic stress disorder, CAPS = clinician administered PTSD scale.
Fig. 3
Fig. 3
Resting-state intrinsic connectivity networks used for group comparisons generated by the independent component analysis. Acronyms: DMN = default mode network, SN = salience network.
Fig. 4
Fig. 4
Baseline comparisons between PTSD (n = 36) and healthy controls (n = 36) pre-NFB intervention (voxel-wise pFWE < 0.05, k = 10). All PTSD patients were grouped together at baseline and compared to age-matched healthy controls in terms of network connectivity. Red clusters correspond to increased network connectivity among PTSD patients as compared to healthy controls. Blue clusters would indicate increased network connectivity among healthy controls as compared to PTSD patients. Importantly, the PTSD experimental group and PTSD sham-control groups did not different significantly at baseline with regard to network connectivity. Acronyms: DMN = default mode network, ACC = anterior cingulate cortex, SMC = supplementary motor cortex, PTSD = posttraumatic stress disorder, NFB = neurofeedback. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5
Fig. 5
Alterations in network connectivity unique to the PTSD experimental group, with correlations to PTSD symptom reductions and NFB performance post NFB treatment (voxel-wise pFWE < 0.05, k = 10). Red clusters correspond to increased connectivity post as compared to pre-NFB intervention. Blue clusters correspond to decreased connectivity post as compared to pre-NFB. The right panels outlined in black correspond to the linear regression analysis between network connectivity and both NFB-training alpha power and PTSD severity improvement on the CAPS within the experimental group. Acronyms: PCC = posterior cingulate cortex, PFC = prefrontal cortex, SMC = supplementary motor cortex, DMN = default mode network, NFB = neurofeedback, CAPS = clinician administered PTSD scale (primary outcome measure), PTSD = posttraumatic stress disorder. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6
Fig. 6
. A. Within-session alpha amplitude for the experimental NFB group and the sham-control NFB group averaged over all NFB-training sessions (1–19). Rest represents the initial 3-min rest recording directly before training, where the subsequent feedback training was subdivided into 7 periods (over 20 min total). Alpha amplitude at the feedback site (channel Pz) was expressed as % change relative to the rest baseline of the respective session. B. Across-session alpha amplitude for the experimental NFB group and the sham-control NFB groups averaged over all training periods (1–7). Alpha amplitude was expressed as % change relative to the rest baseline of the respective session.

References

    1. Abdallah C.G., Southwick S.M., Krystal J.H. Neurobiology of posttraumatic stress disorder (PTSD): a path from novel pathophysiology to innovative therapeutics. Neurosci. Lett. 2017;649:130–132.
    1. Akiki T.J., Averill C.L., Abdallah C.G. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr. Psychiatr. Rep. 2017
    1. Akiki T.J., Averill C.L., Wrocklage K.M., Scott J.C., Averill L.A., Schweinsburg B., Alexander-Bloch A., Martini B., Southwick S.M., Krystal J.H., Abdallah C.G. Default mode network abnormalities in posttraumatic stress disorder: a novel network-restricted topology approach. Elsevier Ltd NeuroImage. 2018;176:489–498.
    1. Allen E.A., Erhardt E.B., Damaraju E., Gruner W., Segall J.M., Silva R.F., Havlicek M., Rachakonda S., Fries J., Kalyanam R., Michael A.M., Caprihan A., Turner J.A., Eichele T., Adelsheim S., Bryan A.D., Bustillo J., Clark V.P., Feldstein Ewing S.W., Filbey F., Ford C.C., Hutchison K., Jung R.E., Kiehl K.A., Kodituwakku P., Komesu Y.M., Mayer A.R., Pearlson G.D., Phillips J.P., Sadek J.R., Stevens M., Teuscher U., Thoma R.J., Calhoun V.D. A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 2011;5:1–23.
    1. Allen M. Unravelling the neurobiology of interoceptive inference. Elsevier Ltd Trends Cogn. Sci. 2020;24:265–266.
    1. APA, 2013. Diagnostic and statistical manual of mental disorders. American Journal of Psychiatry 5th edn (ed. V. A. P. Publishing) Washington DC: Arlington, VA: American Psychiatric Publishing.
    1. Barredo J., Aiken E., Van ’T Wout-Frank M., Greenberg B.D., Carpenter L.L., Philip N.S. Network functional architecture and aberrant functional connectivity in post-traumatic stress disorder: a clinical application of network convergence. Brain Connect. 2018;8:549–557.
    1. Bernstein D.P., Stein J.A., Newcomb M.D., Walker E., Pogge D., Ahluvalia T., Stokes J., Handelsman L., Medrano M., Desmond D., Zule W. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 2003;27:169–190.
    1. Bisson J., Roberts N., Andrew M., Cooper R., Lewis C. Psychological therapies for chronic post-traumatic stress disorder (PTSD) in adults. Cochrane Database Syst. Rev. 2013;12:CD00338.
    1. Blake D.D., Weathers F.W., Nagy L.M., Kaloupek D.G., Gusman F.D., Charney D.S., Keane T.M. The development of a clinician-administered PTSD scale. J. Trauma. Stress. 1995;8:75–90.
    1. Bluhm R.L., Williamson P.C., Osuch E., Frewen P., Stevens T.K., Boksman K., Neufeld R.W.J., Théberge J., Lanius R. Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J. Psychiatr. Neurosci. 2009;34:187–194.
    1. Bradley, R., Greene, J., Russ, E., Dutra, L., Westen, D., Al, E.T., 2005. Reviews and overviews a multidimensional meta-analysis of psychotherapy for PTSD. 214–227.
    1. Briere J. Psychological Assessment Resources; Odessa, Florida: 2002. Multiscale Dissociation Inventory Professional Manual.
    1. Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain’s default network anatomy. Function Relevance Disease. 2008;38:1–38.
    1. Cabanis M., Pyka M., Mehl S., Müller B.W., Loos-Jankowiak S., Winterer G., Wölwer W., Musso F., Klingberg S., Rapp A.M., Langohr K., Wiedemann G., Herrlich J., Walter H., Wagner M., Schnell K., Vogeley K., Kockler H., Shah N.J., Stöcker T., Thienel R., Pauly K., Krug A., Kircher T. The precuneus and the insula in self-attributional processes. Cogn. Affect. Behav. Neurosci. 2013;13:330–345.
    1. Calhoun V.D., Adali T., Pearlson G.D., Pekar J.J. A method for making group inferences from functional MRI data using independent component analysis. 2001;151:140–151.
    1. Calhoun V.D., Kiehl K.A., Pearlson G.D. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum. Brain Mapp. 2008;29:828–838.
    1. Calhoun V.D., Liu J., Adal T. NeuroImage A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45:163–172. doi: 10.1016/j.neuroimage.2008.10.057.
    1. Cavanna A.E., Trimble M.R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–583.
    1. Chen A.C., Etkin A. Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Nature Publishing Group Neuropsychopharmacology. 2013;38:1889–1898.
    1. Clancy, K., Ding, M., Bernat, E., Schmidt, N.B., Li, W., 2017. Restless ‘rest’: intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder.
    1. Clancy, K.J., Andrzejewski, J.A., Simon, J., Ding, M., Schmidt, N.B., Li, W., 2020. Posttraumatic stress disorder is associated with α dysrhythmia across the visual cortex and the default mode network. eNeuro 7.
    1. Craig A.D.B. Significance of the insula for the evolution of human awareness of feelings from the body. Ann. N. Y. Acad. Sci. 2011;1225:72–82.
    1. Daniels J.K., Mcfarlane A.C., Bluhm R.L., Moores K., Richard Clark C., Shaw M.E., Williamson P.C., Densmore M., Lanius R. Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity. J. Psychiatr. Neurosci. 2010;35:258–266.
    1. Dosenbach N.U.F., Fair D., Miezin F.M., Cohen A.L., Wenger K.K., Dosenbach R.a.T., Fox M.D., Snyder A.Z., Vincent J.L., Raichle M.E., Schlaggar B.L., Petersen S.E. Distinct brain networks for adaptive and stable task control in humans. PNAS. 2007;104:11073–11078.
    1. Ehring T., Welboren R., Morina N., Wicherts J.M., Freitag J., Emmelkamp P.M.G. Meta-analysis of psychological treatments for posttraumatic stress disorder in adult survivors of childhood abuse. Elsevier B.V. Clin. Psychol. Rev. 2014;34:645–657.
    1. Eklund A., Nichols T.E., Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. 2016;113:201602413.
    1. Ergenoglu T., Demiralp T., Bayraktaroglu Z., Ergen M., Beydagi H., Uresin Y. Alpha rhythm of the EEG modulates visual detection performance in humans. Cogn. Brain Res. 2004;20:376–383.
    1. Etkin A., Maron-Katz A., Wu W., Fonzo G.A., Huemer J., Vértes P.E., Patenaude B., Richiardi J., Goodkind M.S., Keller C.J., Ramos-Cejudo J., Zaiko Y.V., Peng K.K., Shpigel E., Longwell P., Toll R.T., Thompson A., Zack S., Gonzalez B., Edelstein R., Chen J., Akingbade I., Weiss E., Hart R., Mann S., Durkin K., Baete S.H., Boada F.E., Genfi A., Autea J., Newman J., Oathes D.J., Lindley S.E., Abu-Amara D., Arnow B.A., Crossley N., Hallmayer J., Fossati S., Rothbaum B.O., Marmar C.R., Bullmore E.T., O’Hara R. Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. Sci. Transl. Med. 2019;11:eaal3236.
    1. Farb N.A.S., Segal Z.V., Anderson A.K. Mindfulness meditation training alters cortical representations of interoceptive attention. Social Cogn. Affect. Neurosci. 2013;8:15–26.
    1. Fenster R.J., Lebois L.A.M., Ressler K.J., Suh J. Springer US Nature Reviews Neuroscience; 2018. Brain Circuit Dysfunction in Post-Traumatic Stress Disorder: From Mouse to Man.
    1. First M.B., Spitzer R.L., Gibbon M., Williams J.B.W. Biometrics Research, New York State Psychiatric Institute; New York: 2002. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Patient Edition (SCID-I/P, 11/2002 revision). for DSMIV.
    1. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005;26:15–29.
    1. Frewen P., Schroeter M.L., Riva G., Cipresso P., Fairfield B., Padulo C., Kemp A.H., Palaniyappan L., Owolabi M., Kusi-Mensah K., Polyakova M., Fehertoi N., D’Andrea W., Lowe L., Northoff G. Neuroimaging the consciousness of self: review, and conceptual-methodological framework. Neurosci. Biobehav. Rev. 2020
    1. Goetter, E.M., Bui, E., Ojserkis, R.A., Zakarian, R.J., Brendel, R.W., Simon, N.M., 2015. A systematic review of dropout from psychotherapy for posttraumatic stress disorder among Iraq and Afghanistan Combat Veterans. 401–409.
    1. Gogolla N. The insular cortex. Elsevier Curr. Biol. 2017;27:R580–R586.
    1. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. 100.
    1. Haagen J.F.G., Smid G.E., Knipscheer J.W., Kleber R.J. The efficacy of recommended treatments for veterans with PTSD: a metaregression analysis. Elsevier Ltd Clin. Psychol. Rev. 2015;40:184–194.
    1. Halvorsen J.Ø. Defining clinically significant change. British Journal of Psychiatry. 2016;209(1):85. doi: 10.1192/bjp.209.1.85.
    1. Harricharan S., Nicholson A.A., Thome J., Densmore M., McKinnon M.C., Théberge J., Frewen P.A., Neufeld R.W.J., Lanius R.A. PTSD and its dissociative subtype through the lens of the insula: anterior and posterior insula resting-state functional connectivity and its predictive validity using machine learning. Psychophysiology. 2019:1–23.
    1. Himberg J., Hyva A., Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage. 2004;22:1214–1222. doi: 10.1016/j.neuroimage.2004.03.027.
    1. Holmes S.E., Scheinost D., DellaGioia N., Davis M.T., Matuskey D., Pietrzak R.H., Hampson M., Krystal J.H., Esterlis I. Cerebellar and prefrontal cortical alterations in PTSD: structural and functional evidence. Chronic Stress. 2018;2 247054701878639.
    1. Hopper J.W., Frewen P.A., van der Kolk B.A., Lanius R.A. Neural correlates of reexperiencing, avoidance, and dissociation in PTSD: symptom dimensions and emotion dysregulation in responses to script-driven trauma imagery. J. Trauma. Stress. 2007;20:713–725.
    1. Jang J.H., Kim J.H., Yun J.Y., Choi S.H., An S.C., Kang D.H. Differences in functional connectivity of the insula between brain wave vibration in meditators and non-meditators. Mindfulness. 2018;9:1857–1866.
    1. Jann K., Dierks T., Boesch C., Kottlow M., Strik W., Koenig T. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Elsevier Inc. NeuroImage. 2009;45:903–916.
    1. Jeong H., Park S., Dager S.R., Lim S.M., Lee S.L., Hong H., Ma J., Ha E., Hong Y.S., Kang I., Lee E.H., Yoon S., Kim J.E., Kim J., Lyoo I.K. Altered functional connectivity in the fear network of firefighters with repeated traumatic stress. Br. J. Psychiatry. 2019;214:347–353.
    1. Kennis M., Van Rooij S.J.H., Van Den Heuvel M.P., Kahn R.S., Geuze E. Functional network topology associated with posttraumatic stress disorder in veterans. The Authors NeuroImage: Clin. 2016;10:302–309.
    1. Kirk U., Gu X., Harvey A.H., Fonagy P., Montague P.R. Mindfulness training modulates value signals in ventromedial prefrontal cortex through input from insular cortex. Elsevier B.V. NeuroImage. 2014;100:254–262.
    1. Kluetsch R.C., Ros T., Théberge J., Frewen P., Calhoun V.D., Schmahl C., Jetly R., Lanius R. Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatr. Scand. 2014;130:123–136.
    1. Koch S.B.J., van Zuiden M., Nawijn L., Frijling J.L., Veltman D.J., Olff M. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depression Anxiety. 2016;14:n/a-n/a.
    1. Koek R.J., Roach J., Athanasiou N., van ‘t Wout-Frank M., Philip N.S. Neuromodulatory treatments for post-traumatic stress disorder (PTSD) Elsevier Progr. Neuro-Psychopharmacol. Biol. Psychiatry. 2019;92:148–160.
    1. Krystal J.H., Davis L.L., Neylan T.C., Raskind A.M., Schnurr P.P., Stein M.B., Vessicchio J., Shiner B., Gleason T.D., Huang G.D. It Is Time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD psychopharmacology working group. Biol. Psychiatry. 2017;82:e51–e59.
    1. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, Mckay DR, Glahn DC, Beckmann CF, Smith SM, Fox PT (2011) Behavioral Interpretations of Intrinsic Connectivity Networks. 4022–4037.
    1. Lanius R., Bluhm R.L., Frewen P. How understanding the neurobiology of complex post-traumatic stress disorder can inform clinical practice: a social cognitive and affective neuroscience approach. Acta Psychiatr. Scand. 2011;124:331–348.
    1. Lanius R.A., Frewen P.A., Tursich M., Jetly R., Mckinnon M.C. Restoring large-scale brain networks in PTSD and related disorders: a proposal for neuroscientifically-informed treatment interventions. 2015;1:1–12.
    1. Lanius R.A., Rabellino D., Boyd J.E., Harricharan S., Frewen P.A., McKinnon M.C. The innate alarm system in PTSD: conscious and subconscious processing of threat. Elsevier Ltd Curr. Opin. Psychol. 2017;14:109–115.
    1. Lanius R.A., Terpou B.A., Mckinnon M.C., Lanius R.A., Terpou B.A., Mckinnon M.C., Lanius R.A. The sense of self in the aftermath of trauma : lessons from the default mode network in posttraumatic stress disorder network in posttraumatic stress disorder. European Journal of Psychotraumatology. 2020;11(1) doi: 10.1080/20008198.2020.1807703.
    1. Laufs H., Kleinschmidt a., Beyerle a., Eger E., Salek-Haddadi a., Preibisch C., Krakow K. EEG-correlated fMRI of human alpha activity. NeuroImage. 2003;19:1463–1476.
    1. Lewis C., Roberts N.P., Gibson S., Bisson J.I. Dropout from psychological therapies for post-traumatic stress disorder (PTSD) in adults: systematic review and meta-analysis. Taylor & Francis Eur. J. Psychotraumatol. 2020;11
    1. Liberzon I., Abelson J.L. Context Processing and the Neurobiology of Post-Traumatic Stress Disorder. Elsevier Inc. Neuron. 2016;92:14–30.
    1. Mantini D., Perrucci M.G., Del Gratta C., Romani G.L., Corbetta M. Electrophysiological signatures of resting state networks in the human brain. PNAS. 2007;104:13170–13175.
    1. McCabe C., Mishor Z. Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers. NeuroImage. 2011;57(4):1317–1323. doi: 10.1016/j.neuroimage.2011.05.051.
    1. McCurry K.L., Frueh B.C., Chiu P.H., King-Casas B. Opponent effects of hyperarousal and re-experiencing on affective habituation in posttraumatic stress disorder. Elsevier Inc Biol. Psychiatr. Cogn. Neurosci. Neuroimaging. 2020;5:203–212.
    1. Misaki M., Phillips R., Zotev V., Wong C.K., Wurfel B.E., Krueger F., Feldner M., Bodurka J. Brain activity mediators of PTSD symptom reduction during real-time fMRI amygdala neurofeedback emotional training. Elsevier NeuroImage: Clin. 2019;24:102047.
    1. Modinos G., Ormel J., Aleman A. Activation of anterior insula during self-reflection. PLoS ONE. 2009;4:e4618.
    1. Nachev P., Kennard C., Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 2008;9:856–869.
    1. Namkung H., Kim S.H., Sawa A. The insula: an underestimated brain area in clinical neuroscience, psychiatry, and neurology. Elsevier Ltd Trends Neurosci. 2017;40:200–207.
    1. Nicholson A., Densmore M., Frewen P.A., Théberge J., Neufeld R.W.J., McKinnon M.C., Lanius The dissociative subtype of posttraumatic stress disorder : unique resting-state functional connectivity of basolateral and centromedial amygdala complexes. Neuropsychopharmacology. 2015
    1. Nicholson A.A., Harricharan S., Densmore M., Neufeld R.W.J., Ros T., McKinnon M.C., Frewen P.A., Théberge J., Jetly R., Pedlar D., Lanius R.A. Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. Elsevier NeuroImage: Clin. 2020;27:102262.
    1. Nicholson, A.A., Mckinnon, M.C., Jetly, R., Lanius, R.A., 2020b. Uncovering the heterogeneity of posttraumatic stress disorder: towards a personalized medicine approach for military members. 6.
    1. Nicholson A.A., Rabellino D., Densmore M., Frewen P.A., Paret C., Kluetsch R., Schmahl C., Théberge J., Ros T., Neufeld R.W.J., Mckinnon M.C., Reiss J.P., Jetly R., Lanius R.A. Intrinsic connectivity network dynamics in PTSD during amygdala downregulation. Hum. Brain Mapp. 2018:1–18.
    1. Nicholson A.A., Ros T., Frewen P.A., Densmore M., Théberge J., Kluetsch R.C., Lanius R.A. Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder. Authors NeuroImage: Clin. 2016;12:506–516.
    1. Nicholson A.A., Ros T., Jetly R., Lanius R.A. Regulating posttraumatic stress disorder symptoms with neurofeedback : Regaining control of the mind. J. Military, Veteran Family Health. 2020;6
    1. Nolan H., Whelan R., Reilly R.B. FASTER: fully automated statistical thresholding for EEG artifact rejection. Elsevier B.V. J. Neurosci. Methods. 2010;192:152–162.
    1. Olson I.R., Plotzker A., Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007;130:1718–1731.
    1. Panisch, L.S., Hai, A.H., 2018. The effectiveness of using neurofeedback in the treatment of post-traumatic stress disorder: a systematic review.
    1. Patel R., Spreng R.N., Shin L.M., Girard T. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Elsevier Ltd Neurosci. Biobehav. Rev. 2012;36:2130–2142.
    1. Peniston E.G., Kulkosky P.J. Alpha-theta brainwave neuro-feedback for vietnam veterans with combat- related post-traumatic stress disorder. Medical Psychother. 1991;4:47–60.
    1. Pitman R.K., Rasmusson A.M., Koenen K.C., Shin L.M., Orr S.P., Gilbertson M.W., Milad M.R., Liberzon I. Biological studies of post-traumatic stress disorder. Nature Publishing Group Nat. Rev. Neurosci. 2012;13:769–787.
    1. Qin L., Wang Z., Sun Y., Wan J., Su S., Zhou Y., Xu J. A preliminary study of alterations in default network connectivity in post-traumatic stress disorder patients following recent trauma. Elsevier Brain Res. 2012;1484:50–56.
    1. Qin P., Northoff G. How is our self related to midline regions and the default-mode network? Elsevier Inc NeuroImage. 2011;57:1221–1233.
    1. Rabellino D., Tursich M., Frewen P.A., Daniels J.K., Densmore M., Théberge J., Lanius R.A. Intrinsic Connectivity Networks in post-traumatic stress disorder during sub- and supraliminal processing of threat-related stimuli. Acta Psychiatr. Scand. 2015
    1. Ravindran L.N., Stein M.B. Pharmacotherapy of PTSD: premises, principles, and priorities. Elsevier B.V. Brain Res. 2009;1293:24–39.
    1. Rogel A., Loomis A.M., Hamlin E., Hodgdon H., Spinazzola J., van der Kolk B. The impact of neurofeedback training on children with developmental trauma: a randomized controlled study. Psychol. Trauma: Theory Res. Pract. Policy. 2020
    1. Roiser J.P., Linden D.E., Gorno-Tempinin M.L., Moran R.J., Dickerson B.C., Grafton S.T. Minimum statistical standards for submissions to Neuroimage. Clinical. NeuroImage: Clin. 2016;12:1045–1047.
    1. Ros T., Frewen P., Théberge J., Michela A., Kluetsch R., Mueller A., Candrian G., Jetly R., Vuilleumier P., Lanius R.A. Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cereb. Cortex. 2016:1–12.
    1. Ros T., Baars J.B., Lanius R., Vuilleumier P. Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front. Hum. Neurosci. 2014;8:1–22.
    1. Ros T., Théberge J., Frewen P., Kluetsch R., Densmore M., Calhoun V.D., Lanius R. Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Elsevier Inc. NeuroImage. 2013;65:324–335.
    1. Rzepa E., Dean Z., McCabe C. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex. International Journal of Neuropsychopharmacology. 2017;20(6):455–462. doi: 10.1093/ijnp/pyx016.
    1. Sadaghiani S., Scheeringa R., Lehongre K., Morillon B., Giraud A.-L., Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J. Neurosci.: Off. J. Soc. Neurosci. 2010;30:10243–10250.
    1. Schoenberg P.L.A., David A.S. Biofeedback for psychiatric disorders: a systematic review. Appl. Psychophysiol. Biofeedback. 2014;39:109–135.
    1. Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. Off. J. Soc. Neurosci. 2007;27:2349–2356.
    1. Shalev A., Liberzon I., Marmar C. Post-traumatic stress disorder. N. Engl. J. Med. 2017;376:2459–2469.
    1. Shang J., Lui S., Meng Y., Zhu H., Qiu C., Gong Q., Liao W., Zhang W. Alterations in low-level perceptual networks related to clinical severity in PTSD after an earthquake: a resting-state fMRI study. PLoS ONE. 2014;9:e96834.
    1. Shirer W.R., Ryali S., Rykhlevskaia E., Menon V., Greicius M.D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. 2012;3:158–165.
    1. Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., Weiskopf N., Blefari M.L., Rana M., Oblak E., Birbaumer N., Sulzer J. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 2017;18:86–100.
    1. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., Beckmann, C.F., 2009. Correspondence of the brain’s functional architecture during activation and rest.
    1. Sorger B., Scharnowski F., Linden D.E.J., Hampson M., Young K.D. Control freaks: towards optimal selection of control conditions for fMRI neurofeedback studies. Elsevier Ltd NeuroImage. 2019;186:256–265.
    1. Spreng, R.N., Mar, R.A., Kim, A.S.N., 2008. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. 489–510.
    1. Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. 2008;105:12569–12574.
    1. Sripada R.K., King P., Welsh R.C., Garfinkel S.N., Wang X., Sripada C.S., Liberzon I. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom. Med. 2012;911
    1. Stein D., Ipser J., Seedat S., Sager C., Amos T. Pharmacotherapy for post traumatic stress disorder (PTSD) Cochrane Database Syst. Rev. CD002795. 2006
    1. Szeszko P.R., Yehuda R. Magnetic resonance imaging predictors of psychotherapy treatment response in post-traumatic stress disorder: a role for the salience network. Elsevier Ireland Ltd Psychiatr. Res. 2019;277:52–57.
    1. Tursich M., Ros T., Frewen P.A., Kluetsch R.C., Calhoun V.D., Lanius R.A. Distinct intrinsic network connectivity patterns of post-traumatic stress disorder symptom clusters. Acta Psychiatr. Scand. 2015;132:29–38.
    1. Tursich, M., Ros, T., Pa, F., Rc, K., Vd, C., Ra, L., 2015b. Distinct intrinsic network connectivity patterns of post-traumatic stress disorder symptom clusters. 29–38.
    1. Vanasse T.J., Franklin C., Salinas F.S., Ramage A.E., Calhoun V.D., Robinson P.C., Kok M., Peterson A.L., Mintz J., Litz B.T., Young-Mccaughan S., Resick P.A., Fox P.T. A resting-state network comparison of combat-related PTSD with combat-exposed and civilian controls. Social Cogn. Affect. Neurosci. 2019;14:933–945.
    1. Van der Kolk B.A. Viking; New York: 2014. The body keeps the score: Brain, mind, and body in the healing of trauma.
    1. van der Kolk B.A., Hodgdon H., Gapen M., Musicaro R., Suvak K., Hamlin E., Spinazzola J. A randomized controlled study of neurofeedback for chronic PTSD. PLOS ONE. 2016:1–18.
    1. Wang T., Liu J., Zhang J., Zhan W., Li L., Wu M., Huang H., Zhu H., Kemp G.J., Gong Q. Altered resting-state functional activity in posttraumatic stress disorder: a quantitative meta-analysis. Nature Publishing Group Sci. Rep. 2016;6:1–14.
    1. Weathers, F.W., Blake, D.D., Schnurr, P.P., Kaloupek, D.G., Marx, B.P., Keane, T.M., 2013. The clinician‐administered PTSD scale for DSM‐5 (CAPS‐5). Interview available from the National Center for PTSD at .
    1. Yehuda R., Hoge C.W., McFarlane A.C., Vermetten E., Lanius R.A., Nievergelt C.M., Hobfoll S.E., Koenen K.C., Neylan T.C., Hyman S.E. Post-traumatic stress disorder. Macmillan Publishers Limited Nat. Rev. Disease Primers. 2015;15057
    1. Zotev V., Phillips R., Misaki M., Wong C.K., Wurfel B.E., Krueger F., Feldner M., Bodurka J. Real-time fMRI neurofeedback training of the amygdala activity with simultaneous EEG in veterans with combat-related PTSD. NeuroImage: Clinical. 2018;19:106–121.

Source: PubMed

3
Abonner