The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases

Sami F Khalil, Mas S Mohktar, Fatimah Ibrahim, Sami F Khalil, Mas S Mohktar, Fatimah Ibrahim

Abstract

Bioimpedance analysis is a noninvasive, low cost and a commonly used approach for body composition measurements and assessment of clinical condition. There are a variety of methods applied for interpretation of measured bioimpedance data and a wide range of utilizations of bioimpedance in body composition estimation and evaluation of clinical status. This paper reviews the main concepts of bioimpedance measurement techniques including the frequency based, the allocation based, bioimpedance vector analysis and the real time bioimpedance analysis systems. Commonly used prediction equations for body composition assessment and influence of anthropometric measurements, gender, ethnic groups, postures, measurements protocols and electrode artifacts in estimated values are also discussed. In addition, this paper also contributes to the deliberations of bioimpedance analysis assessment of abnormal loss in lean body mass and unbalanced shift in body fluids and to the summary of diagnostic usage in different kinds of conditions such as cardiac, pulmonary, renal, and neural and infection diseases.

Figures

Figure 1.
Figure 1.
Main body segments and compartments.
Figure 2.
Figure 2.
Cole-Cole module plot and Cole module parameters.
Figure 3.
Figure 3.
Whole body bioimpedance measurement techniques, (a) hand to foot and (b) foot to foot electrodes positioning.
Figure 4.
Figure 4.
Segmental bioimpedance analysis techniques, (a) right side dual current and quad voltage electrodes, (b) right side dual current and quad voltage electrodes, (c) double sides dual current and quad voltage electrodes and (d) double sides quad current and quad voltage electrodes.
Figure 5.
Figure 5.
Bioimpedance vector analysis (BIVA) and tolerance ellipses.

References

    1. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Manuel Gómez J., Lilienthal Heitmann B., Kent-Smith L., Melchior J.-C., Pirlich M. Bioelectrical impedance analysis—Part ii: Utilization in clinical practice. Clin. Nutr. 2004;23:1430–1453.
    1. Thomasset A. Bio-electrical properties of tissue impedance measurements. Lyon Med. 1962;207:107–118.
    1. Nyboer J. In: Electrical Impedance Plethysmograph. 2nd ed. Thomas C., editor. Thomas publishers; Springfield, IL, USA: 1970.
    1. Hoffer E.C., Meador C.K., Simpson D.C. Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 1969;27:531–534.
    1. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Gómez J.M., Heitmann B.L., Kent-Smith L., Melchior J.-C., Pirlich M. Bioelectrical impedance analysis—Part i: Review of principles and methods. Clin. Nutr. 2004;23:1226–1243.
    1. Martinsen O.G., Grimnes S. Bioimpedance and Bioelectricity Basics. Academic Press; Waltham, MA, USA: 2011.
    1. Mialich M.S., Sicchieri J.M.F., Junior A.A.J. Analysis of body composition: A critical review of the use of bioelectrical impedance analysis. Int. J. Clin. Nutr. 2014;2:1–10.
    1. Lukaski H. Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur. J. Clin. Nutr. 2013;67:S2–S9.
    1. Kasap S.O. Principles of Electrical Engineering Materials and Devices. McGraw-Hill; New York, City, NY, USA: 1997.
    1. De Lorenzo A., Andreoli A., Matthie J., Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: A technological review. J. Appl. Physiol. 1997;82:1542–1558.
    1. Genton L., Hans D., Kyle U.G., Pichard C. Dual-energy x-ray absorptiometry and body composition: Differences between devices and comparison with reference methods. Nutrition. 2002;18:66–70.
    1. Thomas B., Ward L., Cornish B. Bioimpedance spectrometry in the determination of body water compartments: Accuracy and clinical significance. Appl. Radiat. Isot. 1998;49:447–455.
    1. Kyle U.G., Genton L., Karsegard L., Slosman D.O., Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001;17:248–253.
    1. Gudivaka R., Schoeller D., Kushner R., Bolt M. Single-and multifrequency models for bioelectrical impedance analysis of body water compartments. J. Appl. Physiol. 1999;87:1087–1096.
    1. Chertow G.M., Lazarus J.M., Lew N.L., Ma L., Lowrie E.G. Development of a population-specific regression equation to estimate total body water in hemodialysis patients. Kidney Int. 1997;51:1578–1582.
    1. Ward L.C., Dyer J.M., Byrne N.M., Sharpe K.K., Hills A.P. Validation of a three-frequency bioimpedance spectroscopic method for body composition analysis. Nutrition. 2007;23:657–664.
    1. Lukaski H.C., Bolonchuk W.W., Hall C.B., Siders W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986;60:1327–1332.
    1. Hanai T. Electrical properties of emulsions. Kolloid-Zeitschrift. 1961;177:57–61.
    1. Olde R.M., Deurenberg P., Jansen R., Van't Hof M., Hoefnagels W. Validation of multi-frequency bioelectrical impedance analysis in detecting changes in fluid balance of geriatric patients. J. Am. Geriatr. Soc. 1997;45:1345–1351.
    1. Woodrow G., Oldroyd B., Turney J., Davies P., Day J., Smith M. Measurement of total body water by bioelectrical impedance in chronic renal failure. Eur. J. Clin. Nutr. 1996;50:676–681.
    1. Jaffrin M.Y., Morel H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (bis) and bioimpedance analysis (bia) methods. Med. Eng. Phys. 2008;30:1257–1269.
    1. Simpson J., Lobo D., Anderson J., Macdonald I., Perkins A., Neal K., Allison S., Rowlands B. Body water compartment measurements: A comparison of bioelectrical impedance analysis with tritium and sodium bromide dilution techniques. Clin. Nutr. 2001;20:339–343.
    1. Pierson R., Wang J., Colt E., Neumann P. Body composition measurements in normal man: The potassium, sodium, sulfate and tritium spaces in 58 adults. J. Chronic Dis. 1982;35:419–428.
    1. Patel R.V., Peterson E.L., Silverman N., Zarowitz B.J. Estimation of total body and extracellular water in post-coronary artery bypass graft surgical patients using single and multiple frequency bioimpedance. Crit. Care Med. 1996;24:1824–1828.
    1. Thomasset A. Bio-electrical properties of tissues. Lyon Med. 1963;209:1325–1352.
    1. Cole K.S., Cole R.H. Dispersion and absorption in dielectrics i. Alternating current characteristics. J. Chem. Phys. 1941;9:341–351.
    1. Cornish B., Ward L., Thomas B., Jebb S., Elia M. Evaluation of multiple frequency bioelectrical impedance and cole-cole analysis for the assessment of body water volumes in healthy humans. Eur. J. Clin. Nutr. 1996;50:159–164.
    1. Pastan S., Gassensmith C. Total body water measured by bioelectrical impedance in patients after hemodialysis: Comparison with urea kinetics. ASAIO J. 1992;38:M186–M189.
    1. Scanferla F., Landini S., Fracasso A., Morachiello P., Righetto F., Toffoletto P., Bazzato G. On-line bioelectric impedance during haemodialysis: Monitoring of body fluids and cell membrane status. Nephrol. Dial Transplant. 1990;5:167–170.
    1. Ellis K.J., Wong W.W. Human hydrometry: Comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. J. Appl. Physiol. 1998;85:1056–1062.
    1. Jaffrin M.Y., Fenech M., Moreno M.V., Kieffer R. Total body water measurement by a modification of the bioimpedance spectroscopy method. Med. Biol. Eng. Comput. 2006;44:873–882.
    1. Matthie J.R. Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J. Appl. Physiol. 2005;99:780–781.
    1. Matthie J., Zarowitz B., De Lorenzo A., Andreoli A., Katzarski K., Pan G., Withers P. Analytic assessment of the various bioimpedance methods used to estimate body water. J. Appl.Physiol. 1998;84:1801–1816.
    1. Baarends E., Van Marken Lichtenbelt W., Wouters E., Schols A. Body-water compartments measured by bio-electrical impedance spectroscopy in patients with chronic obstructive pulmonary disease. Clin. Nutr. 1998;17:15–22.
    1. Cox-Reijven P., Soeters P. Validation of bio-impedance spectroscopy: Effects of degree of obesity and ways of calculating volumes from measured resistance values. Int. J. Obes. 2000;24:271–280.
    1. Earthman C.P., Matthie J.R., Reid P.M., Harper I.T., Ravussin E., Howell W.H. A comparison of bioimpedance methods for detection of body cell mass change in hiv infection. J. Appl. Physiol. 2000;88:944–956.
    1. Ward L., Elia M., Cornish B. Potential errors in the application of mixture theory to multifrequency bioelectrical impedance analysis. Physiol. Meas. 1998;19:53–60.
    1. Hannan W., Cowen S., Plester C., Fearon K., DeBeau A. Comparison of bieimpedance spectroscopy and mu it if requency biei m pedance analysis for the assessment of extracellular and total body water in surgical patients. Clin. Sci. 1995;89:651–658.
    1. Deurenberg P., Andreoli A., De Lorenzo A. Multi-frequency bioelectrical impedance: A comparison between the cole-cole modelling and hanai equations with the classical impedance index approach. Ann. Hum. Biol. 1996;23:31–40.
    1. Scharfetter H., Monif M., Laszlo Z., Lambauer T., Hutten H., Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int. 1997;51:1078–1087.
    1. Ayllon D., Seoane F., Gil-Pita R. Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements-a comparative study. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009); Minneapolis, MN, USA. 3–6 September 2009; pp. 3779–3782.
    1. Ward L.C., Essex T., Cornish B.H. Determination of cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances. Physiol. Meas. 2006;27:839–950.
    1. Cole K.S. Membranes, Ions, and Impulses: A Chapter of Classical Biophysics. Volume 1 University of California Press; Oakland, CA, USA: 1968.
    1. Xie X., Kolthoff N., Bärenholt O., Nielsen S. Validation of a leg-to-leg bioimpedance analysis system in assessing body composition in postmenopausal women. Int. J. Obes. 1999;23:1079–1084.
    1. Jebb S.A., Cole T.J., Doman D., Murgatroyd P.R., Prentice A.M. Evaluation of the novel tanita body-fat analyser to measure body composition by comparison with a four-compartment model. Br. J. Nutr. 2000;83:115–122.
    1. Utter A.C., Nieman D.C., Ward A.N., Butterworth D.E. Use of the leg-to-leg bioelectrical impedance method in assessing body-composition change in obese women. Am. J. Clin. Nutr. 1999;69:603–607.
    1. Deurenberg P., Deurenberg‐Yap M. Validation of skinfold thickness and hand‐held impedance measurements for estimation of body fat percentage among singaporean chinese, malay and indian subjects. Asia Pac. J. Clin. Nutr. 2002;11:1–7.
    1. Ghosh S., Meister D., Cowen S., Hannan J.W., Ferguson A. Body composition at the bedside. Eur. J. Gastroenterol. Hepatol. 1997;9:783–788.
    1. Buchholz A.C., Bartok C., Schoeller D.A. The validity of bioelectrical impedance models in clinical populations. Nutr. Clin. Pract. 2004;19:433–446.
    1. Nuñez C., Gallagher D., Visser M., Pi-Sunyer F.X., Wang Z., Heymsfield S.B. Bioimpedance analysis: Evaluation of leg-to-leg system based on pressure contact footpad electrodes. Med. Sci. Sports Exerc. 1997;29:524–531.
    1. Tanaka N.I., Miyatani M., Masuo Y., Fukunaga T., Kanehisa H. Applicability of a segmental bioelectrical impedance analysis for predicting the whole body skeletal muscle volume. J. Appl. Physiol. 2007;103:1688–1695.
    1. Baumgartner R.N., Chumlea W.C., Roche A.F. Bioelectric impedance phase angle and body composition. Am. J. Clin. Nutr. 1988;48:16–23.
    1. Thomas B., Cornish B., Ward L., Patterson M. A comparison of segmental and wrist-to-ankle methodologies of bioimpedance analysis. Appl. Radiat. Isot. 1998;49:477–478.
    1. Thomas B., Cornish B., Pattemore M., Jacobs M., Ward L. A comparison of the whole-body and segmental methodologies of bioimpedance analysis. Acta Diabetol. 2003;40:s236–s237.
    1. Earthman C., Traughber D., Dobratz J., Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr. Clin. Pract. 2007;22:389–405.
    1. Moon J. Body composition in athletes and sports nutrition: An examination of the bioimpedance analysis technique. Eur. J. Clin. Nutr. 2013;67:S54–S59.
    1. Fogelholm M., van Marken L.W. Comparison of body composition methods: A literature analysis. Eur. J. Clin. Nutr. 1997;51:495–503.
    1. Fuller N., Sawyer M., Laskey M., Paxton P., Elia M. Prediction of body composition in elderly men over 75 years of age. Ann. Hum. Biol. 1996;23:127–147.
    1. Chumlea W., Schubert C., Sun S., Demerath E., Towne B., Siervogel R. A review of body water status and the effects of age and body fatness in children and adults. J. Nutr. Health Aging. 2007;11:111–118.
    1. Coppini L.Z., Waitzberg D.L., Campos A.C.L. Limitations and validation of bioelectrical impedance analysis in morbidly obese patients. Curr. Opin Clin. Nutr. Metab. Care. 2005;8:329–332.
    1. Rutkove S.B., Aaron R., Shiffman C.A. Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve. 2002;25:390–397.
    1. Jaffrin M.Y. Body composition determination by bioimpedance: An update. Curr. Opin. Clin. Nutr. Metab. Care. 2009;12:482–486.
    1. Thomas B., Cornish B., Ward L. Bioelectrical impedance analysis for measurement of body fluid volumes: A review. J. Clin. Eng. 1992;17:505–510.
    1. Piccoli A., Piazza P., Noventa D., Pillon L., Zaccaria M. A new method for monitoring hydration at high altitude by bioimpedance analysis. Med. Sci. Sports Exerc. 1996;28:1517–1522.
    1. Piccoli A., Rossi B., Pillon L., Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: The rxc graph. Kidney Int. 1994;46:534–539.
    1. Piccoli A., Pillon L., Dumler F. Impedance vector distribution by sex, race, body mass index, and age in the united states: Standard reference intervals as bivariate scores. Nutrition. 2002;18:153–167.
    1. Cox-Reijven P.L., van Kreel B., Soeters P.B. Bioelectrical impedance measurements in patients with gastrointestinal disease: Validation of the spectrum approach and a comparison of different methods for screening for nutritional depletion. Am. J. Clin. Nutr. 2003;78:1111–1119.
    1. Azevedo Z.M.A., Moore D.C.B.C., de Matos F.A.A., Fonseca V.M., Peixoto M.V.M., Gaspar-Elsas M.I.C., Santinoni E., dos Anjos L.A., Ramos E.G. Bioelectrical impedance parameters in critically ill children: Importance of reactance and resistance. Clin. Nutr. 2013;32:824–829.
    1. Haas V., Riedl A., Hofmann T., Nischan A., Burghardt R., Boschmann M., Klapp B. Bioimpedance and bioimpedance vector analysis in patients with anorexia nervosa. Eur. Eat. Disord. Rev. 2012;20:400–405.
    1. Norman K., Stobäus N., Pirlich M., Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012;31:854–861.
    1. Ward L.C., Heitmann B.L. Re: “Electrical maturation trajectory of human tissues identified by bioelectrical impedance vector analysis”. Nutrition. 2000;16:319–320.
    1. Marini E., Sergi G., Succa V., Saragat B., Sarti S., Coin A., Manzato E., Buffa R. Efficacy of specific bioelectrical impedance vector analysis (biva) for assessing body composition in the elderly. J. Nutr. Health Aging. 2013;17:515–521.
    1. Bracco D., Thiébaud D., Chioléro R.L., Landry M., Burckhardt P., Schutz Y. Segmental body composition assessed by bioelectrical impedance analysis and dexa in humans. J. Appl. Physiol. 1996;81:2580–2587.
    1. Yanovski S.Z., Hubbard V.S., Heymsfield S.B., Lukaski H.C. Bioelectrical impedance analysis in body composition measurement: National institutes of health technology assessment conference statement. Am. J. Clin. Nutr. 1996;64:524S–532S.
    1. Sanchez B., Vandersteen G., Bragos R., Schoukens J. Basics of broadband impedance spectroscopy measurements using periodic excitations. Meas. Sci. Technol. 2012;23 doi: 10.1088/0957-0233/23/10/105501.
    1. Sanchez B., Bandarenka A.S., Vandersteen G., Schoukens J., Bragos R. Novel approach of processing electrical bioimpedance data using differential impedance analysis. Med. Eng. Phys. 2013;35:1349–1357.
    1. Sanchez B., Schoukens J., Bragos R., Vandersteen G. Novel estimation of the electrical bioimpedance using the local polynomial method. Application to in vivo real-time myocardium tissue impedance characterization during the cardiac cycle. IEEE Trans. Biomed. Eng. 2011;58:3376–3385.
    1. Sanchez B., Vandersteen G., Bragos R., Schoukens J. Optimal multisine excitation design for broadband electrical impedance spectroscopy. Med. Eng. Phys. 2011;22 doi: 10.1088/0957-0233/22/11/115601.
    1. Sanchez B., Rojas C.R., Vandersteen G., Bragos R., Schoukens J. On the calculation of the d-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements. Med. Eng. Phys. 2012;23 doi: 10.1088/0957-0233/23/8/085702.
    1. Sanchez B., Louarroudi E., Jorge E., Cinca J., Bragos R., Pintelon R. A new measuring and identification approach for time-varying bioimpedance using multisine electrical impedance spectroscopy. Physiol. Meas. 2013;34:339–357.
    1. Kyle U.G., Genton L., Slosman D.O., Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition. 2001;17:534–541.
    1. Roubenoff R., Dallal G.E., Wilson P. Predicting body fatness: The body mass index vs. estimation by bioelectrical impedance. Am. J. Public Health. 1995;85:726–728.
    1. Kyle U.G., Pichard C. Dynamic assessment of fat-free mass during catabolism and recovery. Curr. Opin. Clin. Nutr. Metab. Care. 2000;3:317–322.
    1. Heitmann B. Impedance: A valid method in assessment of body composition? Eur. J. Clin. Nutr. 1994;48:228–248.
    1. Kyle U.G., Schutz Y., Dupertuis Y.M., Pichard C. Body composition interpretation: Contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003;19:597–604.
    1. Sun S.S., Chumlea W.C., Heymsfield S.B., Lukaski H.C., Schoeller D., Friedl K., Kuczmarski R.J., Flegal K.M., Johnson C.L., Hubbard V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 2003;77:331–340.
    1. Deurenberg P., Van der Kooy K., Leenen R., Weststrate J., Seidell J. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: A cross-validation study. Int. J. Obes. 1991;15:17–25.
    1. Pichard C., Kyle U.G., Bracco D., Slosman D.O., Morabia A., Schutz Y. Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects. Nutrition. 2000;16:245–254.
    1. Deurenberg P., Weststrate J.A., Seidell J.C. Body mass index as a measure of body fatness: Age-and sex-specific prediction formulas. Br. J. Nutr. 1991;65:105–114.
    1. Heitmann B.L. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study. Eur. J. Clin. Nutr. 1990;44:831–837.
    1. Pichler G.P., Amouzadeh-Ghadikolai O., Leis A., Skrabal F. A critical analysis of whole body bioimpedance spectroscopy (BIS) for the estimation of body compartments in health and disease. Med. Eng. Phys. 2013;35:616–625.
    1. Sargent J.A., Gotch F.A. Replacement of Renal Function by Dialysis. Springer; Dordrecht, The Netherlands: 1989. Principles and biophysics of dialysis; pp. 87–143.
    1. Lukaski H.C., Johnson P.E., Bolonchuk W., Lykken G. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 1985;41:810–817.
    1. Sergi G., Bussolotto M., Perini P., Calliari I., Giantin V., Ceccon A., Scanferla F., Bressan M., Moschini G., Enzi G. Accuracy of bioelectrical impedance analysis in estimation of extracellular space in healthy subjects and in fluid retention states. Ann. Nutr. Metab. 1994;38:158–165.
    1. Deurenberg P., Tagliabue A., Schouten F.J. Multi-frequency impedance for the prediction of extracellular water and total body water. Br. J. Nutr. 1995;73:349–358.
    1. Schloerb P.R., Friis-Hansen B.J., Edelman I.S., Solomon A., Moore F.D. The measurement of total body water in the human subject by deuterium oxide dilution: With a consideration of the dynamics of deuterium distribution 1. J. Clin. Investig. 1950;29:1296–1310.
    1. Moissl U.M., Wabel P., Chamney P.W., Bosaeus I., Levin N.W., Bosy-Westphal A., Korth O., Müller M.J., Ellegård L., Malmros V. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas. 2006;27:921–933.
    1. Wagner D.R., Heyward V.H. Techniques of body composition assessment: A review of laboratory and field methods. Res. Q. Exerc. Sport. 1999;70:135–149.
    1. Serrano M.D.M., de Espinosa M.G.-M., Zamorano E.M. Handbook of Anthropometry. Springer; New York City, NY, USA: 2012. Relationship between physical measures of anthropometry and bioimpedance measures; pp. 459–473.
    1. Jaffrin M.Y., Bousbiat S., Dongmo E. A comparison between two methods for measuring limb resistances with wrist and ankle electrodes. Med. Eng. Phys. 2011;33:943–949.
    1. Diaz E., Villar J., Immink M., Gonzales T. Bioimpedance or anthropometry? Eur. J. Clin. Nutr. 1989;43:129–137.
    1. Ward L., Heitmann B. Assessment of body composition by bioelectrical impedance analysis without the need for measurement of height. Clin. Nutr. 2001;20:21–26.
    1. Mridha S. A comparative study on body composition of male and female national level sub-junior volleyball players. Br. J. Sports Med. 2010;44:i37–i38.
    1. Kirchengast S. Gender differences in body composition from childhood to old age: An evolutionary point of view. J. Life Sci. 2010;2:1–10.
    1. Fomon S.J., Haschke F., Ziegler E.E., Nelson S.E. Body composition of reference children from birth to age 10 years. Am. J. Clin. Nutr. 1982;35:1169–1175.
    1. Kim J.H., Choi S.H., Lim S., Kim K.W., Lim J.Y., Cho N.H., Park K.S., Jang H.C. Assessment of appendicular skeletal muscle mass by bioimpedance in older community-dwelling korean adults. Arch Gerontol. Geriatr. 2014;58:303–307.
    1. Tengvall M., Ellegård L., Malmros V., Bosaeus N., Lissner L., Bosaeus I. Body composition in the elderly: Reference values and bioelectrical impedance spectroscopy to predict total body skeletal muscle mass. Clin. Nutr. 2009;28:52–58.
    1. Eisenmann J.C., Heelan K.A., Welk G.J. Assessing body composition among 3‐ to 8‐year‐old children: Anthropometry, bia, and dxa. Obes. Res. 2004;12:1633–1640.
    1. Buffa R., Floris G.U., Putzu P.F., Marini E. Body composition variations in ageing. Coll. Antropol. 2011;35:259–265.
    1. Deurenberg P., Deurenberg-Yap M., Schouten F. Validity of total and segmental impedance measurements for prediction of body composition across ethnic population groups. Eur. J. Clin. Nutr. 2002;56:214–220.
    1. Deurenberg P., Deurenberg-Yap M. Validity of body composition methods across ethnic population groups. Acta Diabetol. 2003;40:s246–s249.
    1. Deurenberg P., Wolde-Gebriel Z., Schouten F. Validity of predicted total body water and extracellular water using multifrequency bioelectrical impedance in an ethiopian population. Ann. Nutr. Metab. 1995;39:234–241.
    1. Kotler D.P., Burastero S., Wang J., Pierson R. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: Effects of race, sex, and disease. Am. J. Clin. Nutr. 1996;64:489S–497S.
    1. Schulz H., Teske D., Penven D., Tomczak J. Fat-free mass from two prediction equations for bioelectrical impedance analysis in a large german population compared with values in swiss and american adults: Reasons for a biadata project. Nutrition. 2006;22:973–975.
    1. Siváková D., Vondrová D., Valkovič P., Cvíčelová M., Danková Z., Luptáková L. Bioelectrical impedance vector analysis (biva) in slovak population: Application in a clinical sample. Cent. Eur. J. Biol. 2013;8:1094–1101.
    1. Nigam P., Misra A., Colles S.L. Comparison of dexa-derived body fat measurement to two race-specific bioelectrical impedance equations in healthy indians. Diabetes Metab. Syndr. 2013;7:72–77.
    1. Saragat B., Buffa R., Mereu E., De Rui M., Coin A., Sergi G., Marini E. Specific bioelectrical impedance vector reference values for assessing body composition in the italian elderly. Exp. Gerontol. 2014;50:52–56.
    1. Zhu F., Schneditz D., Wang E., Levin N.W. Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. J. Appl. Physiol. 1998;85:497–504.
    1. Schols A., Dingemans A., Soeters P., Wouters E. Within-day variation of bioelectrical resistance measurements in patients with chronic obstructive pulmonary disease. Clin. Nutr. 1990;9:266–271.
    1. Kushner R.F., Gudivaka R., Schoeller D.A. Clinical characteristics influencing bioelectrical impedance analysis measurements. Am. J. Clin. Nutr. 1996;64:423S–427S.
    1. Liang M., Norris S. Effects of skin blood flow and temperature on bioelectric impedance after exercise. Med. Sci. Sports Exerc. 1993;25:1231–1239.
    1. Roos A., Westendorp R., Frölich M., Meinders A. Tetrapolar body impedance is influenced by body posture and plasma sodium concentration. Eur. J. Clin. Nutr. 1992;46:53–60.
    1. Buendía R., Bogónez-Franco P., Nescolarde L., Seoane F. Influence of electrode mismatch on cole parameter estimation from total right side electrical bioimpedance spectroscopy measurements. Med. Eng. Phys. 2012;34:1024–1028.
    1. Shiffman C. Adverse effects of near current-electrode placement in non-invasive bio-impedance measurements. Physiol. Meas. 2013;34:1513–1545.
    1. Scharfetter H., Hartinger P., Hinghofer-Szalkay H., Hutten H. A model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopy. Physiol. Meas. 1998;19:247–261.
    1. Kondrup J., Allison S., Elia M., Vellas B., Plauth M. Espen guidelines for nutrition screening 2002. Clin. Nutr. 2003;22:415–421.
    1. Thibault R., Genton L., Pichard C. Body composition: Why, when and for who? Clin. Nutr. 2012;31:435–447.
    1. Kuczmarski R.J. Bioelectrical impedance analysis measurements as part of a national nutrition survey. Am. J. Clin. Nutr. 1996;64:453S–458S.
    1. Toso S., Piccoli A., Gusella M., Menon D., Bononi A., Crepaldi G., Ferrazzi E. Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition. 2000;16:120–124.
    1. Zlochiver S., Arad M., Radai M., Barak-Shinar D., Krief H., Engelman T., Ben-Yehuda R., Adunsky A., Abboud S. A portable bio-impedance system for monitoring lung resistivity. Med. Eng. Phys. 2007;29:93–100.
    1. Bracco D., Revelly J.-P., Berger M.M., Chiolero R.L. Bedside determination of fluid accumulation after cardiac surgery using segmental bioelectrical impedance. Crit. Care Med. 1998;26:1065–1070.
    1. Hoyle G., Chua M., Soiza R. Volaemic assessment of the elderly hyponatraemic patient: Reliability of clinical assessment and validation of bioelectrical impedance analysis. QJM. 2011;104:35–39.
    1. Cumming K., Hoyle G., Hutchison J., Soiza R.L. Bioelectrical impedance analysis is more accurate than clinical examination in determining the volaemic status of elderly patients with fragility fracture and hyponatraemia. J. Nutr. Health Aging. in press.
    1. Chen Y.-C., Chen H.-H., Yeh J.-C., Chen S.-Y. Adjusting dry weight by extracellular volume and body composition in hemodialysis patients. Nephron. 2002;92:91–96.
    1. Chamney P.W., Krämer M., Rode C., Kleinekofort W., Wizemann V. A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int. 2002;61:2250–2258.
    1. Zhu F., Kuhlman M., Kotanko P., Handelman G., Leonard E., Levin N. A device for monitoring hydration state in hemodialysis patients using a calf bioimpedance technique. Proceedings of the 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography; Graz, Austria. 29 August– 2 September 2007; pp. 775–778.
    1. Zhu F., Kuhlmann M., Kotanko P., Seibert E., Leonard E., Levin N. A method for the estimation of hydration state during hemodialysis using a calf bioimpedance technique. Physiol. Meas. 2008;29:S503–S516.
    1. Seibert E., Mueller S.G., Fries P., Pattmoeller J., Kuss O., Heine G.H., Girndt M., Schneider G., Kotanko P., Zhu F. Calf bioimpedance spectroscopy for determination of dry weight in hemodialysis patients: Effects on hypertension and left ventricular hypertrophy. Kidney Blood Press. Res. 2013;37:58–67.
    1. Atilano X., Luis Miguel J., Martínez J., Sánchez R., Selgas R. Bioimpedance vector analysis as a tool for determination and adjustment of dry weight in hemodialysis patients. Kidney Res. Clin. Prac. 2012;31:A17–A18.
    1. Buffa R., Mereu R., Putzu P., Floris G., Marini E. Bioelectrical impedance vector analysis detects low body cell mass and dehydration in patients with alzheimer's disease. J. Nutr. Health Aging. 2010;14:823–827.
    1. Moreno M.V., Djeddi D.-D., Jaffrin M.Y. Assessment of body composition in adolescent subjects with anorexia nervosa by bioimpedance. Med. Eng. Phys. 2008;30:783–791.
    1. Sillanpää E., Häkkinen A., Häkkinen K. Body composition changes by dxa, bia and skinfolds during exercise training in women. Eur. J. Appl. Physiol. 2013;113:2331–2341.
    1. Paton N.I., Elia M., Jennings G., Ward L.C., Griffin G.E. Bioelectrical impedance analysis in human immunodeficiency virus-infected patients: Comparison of single frequency with multifrequency, spectroscopy, and other novel approaches. Nutrition. 1998;14:658–666.
    1. Libraty D.H., Endy T.P., Kalayanarooj S., Chansiriwongs W., Nisalak A., Green S., Ennis F.A., Rothman A.L. Assessment of body fluid compartment volumes by multifrequency bioelectrical impedance spectroscopy in children with dengue. Trans. R. Soc. Trop. Med. Hyg. 2002;96:295–299.
    1. Simons J., Schols A., Westerterp K., Ten Velde G., Woliters E. Bioelectrical impedance analysis to assess changes intotal body water in patients with cancer. Clin. Nutr. 1999;18:35–39.
    1. Ibrahim F., Taib M.N., Abas W.A.B.W., Guan C.C., Sulaiman S. A novel approach to classify risk in dengue hemorrhagic fever (dhf) using bioelectrical impedance analysis (bia) IEEE Trans. Instrum. Meas. 2005;54:237–244.

Source: PubMed

3
Abonner