In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: Insights from the SGLT2-I AMI PROTECT study

Arturo Cesaro, Felice Gragnano, Pasquale Paolisso, Luca Bergamaschi, Emanuele Gallinoro, Celestino Sardu, Niya Mileva, Alberto Foà, Matteo Armillotta, Angelo Sansonetti, Sara Amicone, Andrea Impellizzeri, Giuseppe Esposito, Nuccia Morici, Jacopo Andrea Oreglia, Gianni Casella, Ciro Mauro, Dobrin Vassilev, Nazzareno Galie, Gaetano Santulli, Carmine Pizzi, Emanuele Barbato, Paolo Calabrò, Raffaele Marfella, Arturo Cesaro, Felice Gragnano, Pasquale Paolisso, Luca Bergamaschi, Emanuele Gallinoro, Celestino Sardu, Niya Mileva, Alberto Foà, Matteo Armillotta, Angelo Sansonetti, Sara Amicone, Andrea Impellizzeri, Giuseppe Esposito, Nuccia Morici, Jacopo Andrea Oreglia, Gianni Casella, Ciro Mauro, Dobrin Vassilev, Nazzareno Galie, Gaetano Santulli, Carmine Pizzi, Emanuele Barbato, Paolo Calabrò, Raffaele Marfella

Abstract

Background: Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) have shown significant cardiovascular benefits in patients with and without type 2 diabetes mellitus (T2DM). They have also gained interest for their potential anti-arrhythmic role and their ability to reduce the occurrence of atrial fibrillation (AF) and ventricular arrhythmias (VAs) in T2DM and heart failure patients.

Objectives: To investigate in-hospital new-onset cardiac arrhythmias in a cohort of T2DM patients presenting with acute myocardial infarction (AMI) treated with SGLT2-i vs. other oral anti-diabetic agents (non-SGLT2-i users).

Methods: Patients from the SGLT2-I AMI PROTECT registry (NCT05261867) were stratified according to the use of SGLT2-i before admission for AMI, divided into SGLT2-i users vs. non-SGLT2-i users. In-hospital outcomes included the occurrence of in-hospital new-onset cardiac arrhythmias (NOCAs), defined as a composite of new-onset AF and sustained new-onset ventricular tachycardia (VT) and/or ventricular fibrillation (VF) during hospitalization.

Results: The study population comprised 646 AMI patients categorized into SGLT2-i users (111 patients) and non-SGLT2-i users (535 patients). SGLT2-i users had a lower rate of NOCAs compared with non-SGLT2-i users (6.3 vs. 15.7%, p = 0.010). Moreover, SGLT2-i was associated with a lower rate of AF and VT/VF considered individually (p = 0.032). In the multivariate logistic regression model, after adjusting for all confounding factors, the use of SGLT2-i was identified as an independent predictor of the lower occurrence of NOCAs (OR = 0.35; 95%CI 0.14-0.86; p = 0.022). At multinomial logistic regression, after adjusting for potential confounders, SGLT2-i therapy remained an independent predictor of VT/VF occurrence (OR = 0.20; 95%CI 0.04-0.97; p = 0.046) but not of AF occurrence.

Conclusions: In T2DM patients, the use of SGLT2-i was associated with a lower risk of new-onset arrhythmic events during hospitalization for AMI. In particular, the primary effect was expressed in the reduction of VAs. These findings emphasize the cardioprotective effects of SGLT2-i in the setting of AMI beyond glycemic control.

Trial registration: Data are part of the observational international registry: SGLT2-I AMI PROTECT. ClinicalTrials.gov, identifier: NCT05261867.

Keywords: acute myocardial infarction; atrial fibrillation; hyperglycemia; sodium-glucose cotransporter 2 inhibitors (SGLT2-i); ventricular arrhythmias; ventricular tachycardia.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Cesaro, Gragnano, Paolisso, Bergamaschi, Gallinoro, Sardu, Mileva, Foà, Armillotta, Sansonetti, Amicone, Impellizzeri, Esposito, Morici, Oreglia, Casella, Mauro, Vassilev, Galie, Santulli, Pizzi, Barbato, Calabrò and Marfella.

Figures

Figure 1
Figure 1
Study design and occurrence of new-onset cardiac arrhythmias. AF, atrial fibrillation; AMI, acute myocardial infarction; NOCAs, new-onset cardiac arrhythmias; T2DM, type 2 diabetes mellitus; SGLT2-i, Sodium-glucose co-transporter 2 inhibitors; VF, Ventricular Fibrillation; VT, Ventricular Tachycardia.
Figure 2
Figure 2
Primary endpoint and its individual components in SGLT2-i and non-SGLT2-i users. AF, atrial fibrillation; NOCAs, new-onset cardiac arrhythmias; SGLT2-i, Sodium-glucose co-transporter 2 inhibitors; VF, Ventricular Fibrillation; VT, Ventricular Tachycardia.
Figure 3
Figure 3
Effects of predictors of new-onset cardiac arrhythmias. BGL, blood glucose level; CA, cardiac arrest; ECG, electrocardiogram; LVEF, Left ventricular ejection fraction; NOCAs, new-onset cardiac arrhythmias; SGLT2-i, Sodium-glucose cotransporter 2 inhibitors; STEMI, ST-elevation myocardial infarction; VT, ventricular tachycardia.

References

    1. Kalarus Z, Svendsen JH, Capodanno D, Dan G-A, De Maria E, Gorenek B, et al. . Cardiac arrhythmias in the emergency settings of acute coronary syndrome and revascularization: an European Heart Rhythm Association (EHRA) consensus document, endorsed by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Acute Cardiovascular Care Association (ACCA). EP Eur. (2019) 21:1603–4. 10.1093/europace/euz163
    1. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. . 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. (2020) 42:373–498. 10.1093/eurheartj/ehaa612
    1. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. . 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. (2018) 138: e272–e391. 10.1161/CIR.0000000000000549
    1. Di Diego JM, Antzelevitch C. Ischemic ventricular arrhythmias: Experimental models and their clinical relevance. Hear Rhythm. (2011) 8:1963–8. 10.1016/j.hrthm.2011.06.036
    1. Sattler SM, Skibsbye L, Linz D, Lubberding AF, Tfelt-Hansen J, Jespersen T. Ventricular arrhythmias in first acute myocardial infarction: epidemiology, mechanisms, and interventions in large animal models. Front Cardiovasc Med. (2019) 6:158. 10.3389/fcvm.2019.00158
    1. Liang C, Li Q, Wang K, Du Y, Wang W, Zhang H. Mechanisms of ventricular arrhythmias elicited by coexistence of multiple electrophysiological remodeling in ischemia: a simulation study. PLoS Comput Biol. (2022) 18:e1009388. 10.1371/journal.pcbi.1009388
    1. Jabre P, Jouven X, Adnet F, Thabut G, Bielinski SJ, Weston SA, et al. . Atrial fibrillation and death after myocardial infarction. Circulation. (2011) 123:2094–100. 10.1161/CIRCULATIONAHA.110.990192
    1. Henkel DM, Witt BJ, Gersh BJ, Jacobsen SJ, Weston SA, Meverden RA, et al. . Ventricular arrhythmias after acute myocardial infarction: a 20-year community study. Am Heart J. (2006) 151:806–12. 10.1016/j.ahj.2005.05.015
    1. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. . 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. (2018) 39:119–77. 10.5603/KP.2018.0041
    1. Mehta RH Yu J, Piccini JP, Tcheng JE, Farkouh ME, Reiffel J, et al. . Prognostic significance of postprocedural sustained ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention (from the HORIZONS-AMI Trial). Am J Cardiol. (2012) 109:805–12. 10.1016/j.amjcard.2011.10.043
    1. Tran H V, Ash AS, Gore JM, Darling CE, Kiefe CI, Goldberg RJ. Twenty-five year trends (1986-2011) in hospital incidence and case-fatality rates of ventricular tachycardia and ventricular fibrillation complicating acute myocardial infarction. Am Heart J. (2019) 208:1–10. 10.1016/j.ahj.2018.10.007
    1. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. (2012) 125:620–37. 10.1161/CIRCULATIONAHA.111.023838
    1. Udell JA, Jones WS, Petrie MC, Harrington J, Anker SD, Bhatt DL, et al. . Sodium glucose cotransporter-2 inhibition for acute myocardial infarction. J Am Coll Cardiol. (2022) 79:2058–68. 10.1016/j.jacc.2022.03.353
    1. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. . Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. (2019) 381:1995–2008.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. . Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. (2015) 373:2117–28. 10.1056/NEJMoa1504720
    1. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. . Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. (2021) 385:1451–61.
    1. Marfella R, D'Onofrio N, Trotta MC, Sardu C, Scisciola L, Amarelli C, et al. . Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts. Metabolism. (2022) 127:154936. 10.1016/j.metabol.2021.154936
    1. Sardu C, Massetti M, Testa N, Martino L Di, Castellano G, Turriziani F, et al. . Effects of sodium-glucose transporter 2 inhibitors (SGLT2-I) in patients with Ischemic Heart Disease (IHD) treated by coronary artery bypass grafting via MiECC: inflammatory burden, and clinical outcomes at 5 years of follow-up. Front Pharmacol. (2021) 12:777083. 10.3389/fphar.2021.777083
    1. Sardu C, Massimo Massetti M, Rambaldi P, Gatta G, Cappabianca S, Sasso FC, et al. . SGLT2-inhibitors reduce the cardiac autonomic neuropathy dysfunction and vaso-vagal syncope recurrence in patients with type 2 diabetes mellitus: the SCAN study. Metabolism. (2022) 155243. 10.1016/j.metabol.2022.155243
    1. Bell DSH, Goncalves E. Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes Obes Metab. (2019) 21:210–7. 10.1111/dom.13512
    1. Bhar-Amato J, Davies W, Agarwal S. Ventricular arrhythmia after acute myocardial infarction: ‘The Perfect Storm'. Arrhythmia Electrophysiol Rev. (2017) 6:134. 10.15420/aer.2017.24.1
    1. Kolesnik E, Scherr D, Rohrer U, Benedikt M, Manninger M, Sourij H, et al. . SGLT2 inhibitors and their antiarrhythmic properties. Int J Mol Sci. (2022) 23:1678. 10.3390/ijms23031678
    1. Yin Z, Zheng H, Guo Z. Effect of Sodium-Glucose Co-transporter protein 2 inhibitors on arrhythmia in heart failure patients with or without type 2 diabetes: a meta-analysis of randomized controlled trials. Front Cardiovasc Med. (2022) 9:902923. 10.3389/fcvm.2022.902923
    1. Manolis AA, Manolis TA, Melita H, Manolis AS. Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias. Trends Cardiovasc Med. (2022) S1050-1738(22)00062-7. 10.1016/j.tcm.2022.04.003
    1. Paolisso P, Bergamaschi L, Santulli G, Gallinoro E, Cesaro A, Gragnano F, et al. . Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry. Cardiovasc Diabetol. (2022) 21:77. 10.1186/s12933-022-01506-8
    1. Usman MS, Siddiqi TJ, Memon MM, Khan MS, Rawasia WF, Talha Ayub M, et al. . Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol. (2018) 25:495–502. 10.1177/2047487318755531
    1. Li C, Liang S, Gao L, Liu H. Cardiovascular outcomes associated with SGLT-2 inhibitors versus other glucose-lowering drugs in patients with type 2 diabetes: a real-world systematic review and meta-analysis. PLoS ONE. (2021) 16:e0244689. 10.1371/journal.pone.0244689
    1. Norhammar A, Bodegård J, Nyström T, Thuresson M, Nathanson D, Eriksson JW. Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: a nationwide observational study. Diabetes Obes Metab. (2019) 21:1136–45. 10.1111/dom.13627
    1. Birkeland KI, Jørgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, et al. . Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. (2017) 5:709–17. 10.1016/S2213-8587(17)30258-9
    1. Persson F, Nyström T, Jørgensen ME, Carstensen B, Gulseth HL, Thuresson M, et al. . Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase-4 inhibitor therapy: A multinational observationa. Diabetes, Obes Metab. (2018) 20:344–51. 10.1111/dom.13077
    1. Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, et al. . Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus. Circulation. (2020) 141:1227–34. 10.1161/CIRCULATIONAHA.119.044183
    1. Ling AW-C, Chan C-C, Chen S-W, Kao Y-W, Huang C-Y, Chan Y-H, et al. . The risk of new-onset atrial fibrillation in patients with type 2 diabetes mellitus treated with sodium glucose cotransporter 2 inhibitors versus dipeptidyl peptidase-4 inhibitors. Cardiovasc Diabetol. (2020) 19:188. 10.1186/s12933-020-01162-w
    1. Pandey AK, Okaj I, Kaur H, Belley-Cote EP, Wang J, Oraii A, et al. . Sodium-Glucose Co-Transporter inhibitors and atrial fibrillation: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. (2021) 10:e022222. 10.1161/JAHA.121.022222
    1. Fernandes GC, Fernandes A, Cardoso R, Penalver J, Knijnik L, Mitrani RD, et al. . Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: a meta-analysis of 34 randomized controlled trials. Hear Rhythm. (2021) 18:1098–105. 10.1016/j.hrthm.2021.03.028
    1. Li H-L, Lip GYH, Feng Q, Fei Y, Tse Y-K, Wu M, et al. . Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. (2021) 20:100. 10.1186/s12933-021-01293-8
    1. Zhou Z, Jardine MJ Li Q, Neuen BL, Cannon CP, de Zeeuw D, et al. . Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease. Stroke. (2021) 52:1545–56. 10.1161/STROKEAHA.120.031623
    1. Jhuo S-J, Lin T-H, Lin Y-H, Tsai W-C, Liu I-H, Wu B-N, et al. . Clinical observation of SGLT2 inhibitor therapy for cardiac arrhythmia and related cardiovascular disease in diabetic patients with controlled hypertension. J Pers Med. (2022) 12:271. 10.3390/jpm12020271
    1. Suzuki Y, Kaneko H, Okada A, Itoh H, Matsuoka S, Fujiu K, et al. . Comparison of cardiovascular outcomes between SGLT2 inhibitors in diabetes mellitus. Cardiovasc Diabetol. (2022) 21:67. 10.1186/s12933-022-01508-6
    1. Curtain JP, Docherty KF, Jhund PS, Petrie MC, Inzucchi SE, Køber L, et al. . Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur Heart J. (2021) 42:3727–38. 10.1093/eurheartj/ehab560
    1. Ilyas F, Jones L, Tee SL, Horsfall M, Swan A, Wollaston F, et al. . Acute pleiotropic effects of dapagliflozin in type 2 diabetic patients with heart failure with reduced ejection fraction: a crossover trial. ESC Hear Fail. (2021) 8:4346–52. 10.1002/ehf2.13553
    1. Sau A, Kaura A, Ahmed A, Patel KHK, Li X, Mulla A, et al. . Prognostic significance of ventricular arrhythmias in 13 444 patients with acute coronary syndrome: a retrospective cohort study based on routine clinical data (NIHR Health Informatics Collaborative VA-ACS Study). J Am Heart Assoc. (2022) 11:e024260. 10.1161/JAHA.121.024260
    1. Chen H-Y, Huang J-Y, Siao W-Z, Jong G-P. The association between SGLT2 inhibitors and new-onset arrhythmias: a nationwide population-based longitudinal cohort study. Cardiovasc Diabetol. (2020) 19:73. 10.1186/s12933-020-01048-x
    1. Shimizu W, Kubota Y, Hoshika Y, Mozawa K, Tara S, Tokita Y, et al. . Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc Diabetol. (2020) 19:148. 10.21203/-35207/v2
    1. Wan N, Rahman A, Hitomi H, Nishiyama A. The effects of Sodium-Glucose cotransporter 2 inhibitors on sympathetic nervous activity. Front Endocrinol. (2018) 9:421. 10.3389/fendo.2018.00421
    1. Verma S. Are the cardiorenal benefits of SGLT2 inhibitors due to inhibition of the sympathetic nervous system? JACC Basic to Transl Sci. (2020) 5:180–2. 10.1016/j.jacbts.2020.01.011
    1. Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. (2009) 24:293–316. 10.1177/0885066609340519
    1. Tran H V, Gore JM, Darling CE, Ash AS, Kiefe CI, Goldberg RJ. Hyperglycemia and risk of ventricular tachycardia among patients hospitalized with acute myocardial infarction. Cardiovasc Diabetol. (2018) 17:136. 10.1186/s12933-018-0779-8
    1. de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ. Sympathetic nervous system in age-related cardiovascular dysfunction: pathophysiology and therapeutic perspective. Int J Biochem Cell Biol. (2019) 108:29–33. 10.1016/j.biocel.2019.01.004
    1. Marfella R, De Angelis L, Siniscalchi M, Rossi F, Giugliano D, Nappo F. The effect of acute hyperglycaemia on QTc duration in healthy man. Diabetologia. (2000) 43:571–5. 10.1007/s001250051345
    1. Andersen A, Bagger JI, Baldassarre MPA, Christensen MB, Abelin KU, Faber J, et al. . Acute hypoglycemia and risk of cardiac arrhythmias in insulin-treated type 2 diabetes and controls. Eur J Endocrinol. (2021) 185:343–53. 10.1530/EJE-21-0232
    1. Philippaert K, Kalyaanamoorthy S, Fatehi M, Long W, Soni S, Byrne NJ, et al. . Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation. (2021) 143:2188–204. 10.1161/CIRCULATIONAHA.121.053350
    1. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B, et al. . SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol. (2018) 17:144. 10.1186/s12933-018-0790-0
    1. Mustroph J, Wagemann O, Lücht CM, Trum M, Hammer KP, Sag CM, et al. . Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Hear Fail. (2018) 5:642–8. 10.1002/ehf2.12336
    1. Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 inhibitors—does it all come down to Na+? Int J Mol Sci. (2021) 22:7976. 10.3390/ijms22157976
    1. Hu Z, Ju F, Du L, Abbott GW. Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol. (2021) 20:199. 10.1186/s12933-021-01392-6
    1. Azam MA, Chakraborty P, Si D, Du B, Massé S, Lai PFH, et al. . Anti-arrhythmic and inotropic effects of empagliflozin following myocardial ischemia. Life Sci. (2021) 276:119440. 10.1016/j.lfs.2021.119440

Source: PubMed

3
Abonner