Protocol for a phase II randomised controlled trial of TKI alone versus TKI and local consolidative radiation therapy in patients with oncogene driver-mutated oligometastatic non-small cell lung cancer

Anil Tibdewal, JaiPrakash Agarwal, Naveen Mummudi, Vanita Noronha, Kumar Prabhash, Vijay Patil, Nilendu Purandare, Amit Janu, Rajiv Kaushal, Sadhna Kannan, Anil Tibdewal, JaiPrakash Agarwal, Naveen Mummudi, Vanita Noronha, Kumar Prabhash, Vijay Patil, Nilendu Purandare, Amit Janu, Rajiv Kaushal, Sadhna Kannan

Abstract

Introduction: Tyrosine kinase inhibitors (TKIs) have significantly improved the progression-free survival (PFS) of metastatic non-small cell lung cancer (NSCLC) with oncogene mutations of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) compared with systemic therapy alone. However, the majority eventually develop resistance with a median PFS of 8-12 months. The pattern of failure studies showed disease relapse at the original sites of the disease-harbouring resistant tumour cells.

Methods and analysis: This study is designed as a phase II randomised controlled trial to evaluate the efficacy of local consolidative radiation therapy (LCRT) in addition to TKI in upfront oligometastatic NSCLC. Patients will be screened at presentation for oligometastases (≤5 sites) and will start on TKI after confirmation of EGFR or ALK mutation status. After initial TKI for 2-4 months, eligible patients will be randomised in a 1:1 ratio with stratification of oligometastatic sites (1-3 vs 4-5), performance status of 0-1 versus 2 and brain metastases. The standard arm will continue to receive TKI, and the intervention arm will receive TKI plus LCRT. Stereotactic body radiation therapy will be delivered to all the oligometastatic sites.The primary end point is PFS, and secondary end points are overall survival, local control of oligometastatic sites, toxicity and patient-reported outcomes. The sample size calculation took a median PFS of 10 months in the standard arm. To detect an absolute improvement of 7 months in the interventional arm, with a one-sided alpha of 5% and 80% power, a total of 106 patients will be accrued over a period of 48 months.

Ethics and dissemination: The study is approved by the Institutional Ethics Committee II of Tata Memorial Centre, Mumbai, and registered with Clinical Trials Registry-India, CTRI/2019/11/021872, dated 5 November 2019. All eligible participants will be provided with a participant information sheet and will be required to provide written informed consent for participation in the study. The study results will be presented at a national/international conference and will be published in a peer-reviewed journal.

Keywords: chemotherapy; oncology; radiotherapy; thoracic medicine.

Conflict of interest statement

Competing interests: VN has received institutional research funding from Amgen, Sanofi India, Dr. Reddy’s Laboratories, Intas Pharmaceuticals and Astra Zeneca Pharma India. All research grants have been paid to the institution. KP has received research funding from Dr. Reddy’s Laboratories, Fresenius Kabi India, Alkem Laboratories, Natco Pharma, BDR Pharmaceuticals and Roche Holding AG (all research grants paid to the institution and are unrelated to this study project).

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
Study schema. ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; LCRT, local consolidative radiation therapy; NSCLC, non-small cell lung cancer; OM, oligometastases; PFS, progression-free survival; PS, performance status.

References

    1. World Health Organization . Globocan 2018 : All Cancers. Int Agency Res Cancer 2019;1:1–2.
    1. Globocan . International agency for research on cancer. India Factsheet, 2018.
    1. Hellman S, Weichselbaum RR. Oligometastases. JCO 1995;13:8–10. 10.1200/JCO.1995.13.1.8
    1. Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol 2011;8:378–82. 10.1038/nrclinonc.2011.44
    1. Wu Y-L, Lu S, Lu Y, et al. . Results of PROFILE 1029, a Phase III Comparison of First-Line Crizotinib versus Chemotherapy in East Asian Patients with ALK-Positive Advanced Non-Small Cell Lung Cancer. J Thorac Oncol 2018;13:1539–48. 10.1016/j.jtho.2018.06.012
    1. Wu Y-L, Cheng Y, Zhou X, et al. . Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (Archer 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 2017;18:1454–66. 10.1016/S1470-2045(17)30608-3
    1. Maemondo M, Inoue A, Kobayashi K, et al. . Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362:2380–8. 10.1056/NEJMoa0909530
    1. Rosell R, Carcereny E, Gervais R, et al. . Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13:239–46. 10.1016/S1470-2045(11)70393-X
    1. Mitsudomi T, Morita S, Yatabe Y, et al. . Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010;11:121–8. 10.1016/S1470-2045(09)70364-X
    1. Zhou C, Wu Y-L, Chen G, et al. . Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (optimal, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011;12:735–42. 10.1016/S1470-2045(11)70184-X
    1. Shaw AT, Kim D-W, Nakagawa K, et al. . Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013;368:2385–94. 10.1056/NEJMoa1214886
    1. Pao W, Miller VA, Politi KA, et al. . Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2:e73–35. 10.1371/journal.pmed.0020073
    1. Cortot AB, Jänne PA. Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 2014;23:356–66. 10.1183/09059180.00004614
    1. Sequist LV, Waltman BA, Dias-Santagata D, et al. . Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011;3:75ra26. 10.1126/scitranslmed.3002003
    1. Mok TS, Wu Y-L, Ahn M-J, et al. . Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive lung cancer. N Engl J Med 2017;376:629–40. 10.1056/NEJMoa1612674
    1. Katayama R, Shaw AT, Khan TM, et al. . Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 2012;4:120ra17–120. 10.1126/scitranslmed.3003316
    1. Soria J-C, Ohe Y, Vansteenkiste J, et al. . Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018;378:113–25. 10.1056/NEJMoa1713137
    1. Hida T, Nokihara H, Kondo M, et al. . Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 2017;390:29–39. 10.1016/S0140-6736(17)30565-2
    1. Patil VM, Noronha V, Joshi A, et al. . Phase III study of gefitinib or pemetrexed with carboplatin in EGFR-mutated advanced lung adenocarcinoma. ESMO Open 2017;2:e000168. 10.1136/esmoopen-2017-000168
    1. Mok TS, Wu Y-L, Ahn M-J, et al. . Osimertinib or platinum-pemetrexed in EGFR T790M-Positive lung cancer. N Engl J Med 2017;376:629–40. 10.1056/NEJMoa1612674
    1. Under the aegis of Lung Cancer Consortium Asia (LCCA), Indian Cooperative Oncology Network (ICON), Indian Society of Medical & Pediatric Oncology (ISMPO), et al. . Indian consensus statement for treatment of advanced non small cell lung cancer: first line, maintenance, and second line. Indian J Cancer 2017;54:89–103. 10.4103/ijc.IJC_136_17
    1. Xu Q, Liu H, Meng S, et al. . First-Line continual EGFR-TKI plus local ablative therapy demonstrated survival benefit in EGFR-mutant NSCLC patients with oligoprogressive disease. J Cancer 2019;10:522–9. 10.7150/jca.26494
    1. Rusthoven KE, Hammerman SF, Kavanagh BD, et al. . Is there a role for consolidative stereotactic body radiation therapy following first-line systemic therapy for metastatic lung cancer? A patterns-of-failure analysis. Acta Oncol 2009;48:578–83. 10.1080/02841860802662722
    1. Weickhardt AJ, Scheier B, Burke JM, et al. . Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 2012;7:1807–14. 10.1097/JTO.0b013e3182745948
    1. Basler L, Kroeze SGC, Guckenberger M. SBRT for oligoprogressive oncogene addicted NSCLC. Lung Cancer 2017;106:50–7. 10.1016/j.lungcan.2017.02.007
    1. Patil VM, Noronha V, Joshi A, et al. . Phase III study of gefitinib or pemetrexed with carboplatin in EGFR-mutated advanced lung adenocarcinoma. ESMO Open 2017;2:e000168:10–18. 10.1136/esmoopen-2017-000168
    1. Noronha V, Patil VM, Joshi A. Ge FI tinib versus Ge FI tinib plus pemetrexed and carboplatin chemotherapy in EGFR. Mutated Lung Cancer 2020:1–14.
    1. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol 1995;13:8–10. 10.1200/JCO.1995.13.1.8
    1. Andrews DW, Scott CB, Sperduto PW. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases : phase III results of the RTOG 9508 randomised trial 2004;363:1665–72.
    1. Patchell RA, Tibbs PA, Walsh JW, et al. . A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990;322:494–500. 10.1056/NEJM199002223220802
    1. Shady W, Petre EN, Gonen M, et al. . Percutaneous Radiofrequency Ablation of Colorectal Cancer Liver Metastases: Factors Affecting Outcomes--A 10-year Experience at a Single Center. Radiology 2016;278:601–11. 10.1148/radiol.2015142489
    1. Sutera P, Clump DA, Kalash R, et al. . Initial results of a multicenter phase 2 trial of stereotactic ablative radiation therapy for oligometastatic cancer. Int J Radiat Oncol Biol Phys 2019;103:116–22. 10.1016/j.ijrobp.2018.08.027
    1. Palma DA, Olson R, Harrow S, et al. . Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 2019;393:2051–8. 10.1016/S0140-6736(18)32487-5
    1. Eberhardt WEE, Mitchell A, Crowley J, et al. . The IASLC lung cancer staging project. J Thorac Oncol 2015;10:1515–22. 10.1097/JTO.0000000000000673
    1. Van den Begin R, Engels B, Collen C, et al. . The METABANK score: a clinical tool to predict survival after stereotactic radiotherapy for oligometastatic disease. Radiother Oncol 2019;133:113–9. 10.1016/j.radonc.2019.01.001
    1. Li S, Zhu R, Li D, et al. . Prognostic factors of oligometastatic non-small cell lung cancer: a meta-analysis. J Thorac Dis 2018;10:3701–13. 10.21037/jtd.2018.05.105
    1. Ashworth AB, Senan S, Palma DA, et al. . An individual patient data metaanalysis of outcomes and prognostic factors after treatment of oligometastatic non-small-cell lung cancer. Clin Lung Cancer 2014;15:346–55. 10.1016/j.cllc.2014.04.003
    1. Griffioen GHMJ, Toguri D, Dahele M, et al. . Radical treatment of synchronous oligometastatic non-small cell lung carcinoma (NSCLC): patient outcomes and prognostic factors. Lung Cancer 2013;82:95–102. 10.1016/j.lungcan.2013.07.023
    1. Gomez DR, Blumenschein GR, Lee JJ, et al. . Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol 2016;17:1672–82. 10.1016/S1470-2045(16)30532-0
    1. Shaverdian N, Lisberg AE, Bornazyan K, et al. . Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol 2017;18:895–903. 10.1016/S1470-2045(17)30380-7
    1. Theelen WSME, Peulen HMU, Lalezari F, et al. . Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol 2019;5:1276–82. 10.1001/jamaoncol.2019.1478
    1. Al-Halabi H, Sayegh K, Digamurthy SR, et al. . Pattern of failure analysis in metastatic EGFR-mutant lung cancer treated with tyrosine kinase inhibitors to identify candidates for consolidation stereotactic body radiation therapy. J Thorac Oncol 2015;10:1601–7. 10.1097/JTO.0000000000000648
    1. Patel SH, Rimner A, Foster A, et al. . Patterns of initial and intracranial failure in metastatic EGFR-mutant non-small cell lung cancer treated with erlotinib. Lung Cancer 2017;108:109–14. 10.1016/j.lungcan.2017.03.010
    1. Yang J-J, Chen H-J, Yan H-H, et al. . Clinical modes of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non-small cell lung cancer. Lung Cancer 2013;79:33–9. 10.1016/j.lungcan.2012.09.016
    1. Park K, Yu C-J, Kim S-W, et al. . First-Line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in Asian patients with epidermal growth factor receptor Mutation–Positive Non–Small-Cell lung cancer. JAMA Oncol 2016;2:305–12. 10.1001/jamaoncol.2015.4921
    1. Hu F, Xu J, Zhang B, et al. . Efficacy of local consolidative therapy for oligometastatic lung adenocarcinoma patients harboring epidermal growth factor receptor mutations. Clin Lung Cancer 2019;20:e81–90. 10.1016/j.cllc.2018.09.010
    1. Xu Q, Zhou F, Liu H, et al. . Consolidative local ablative therapy improves the survival of patients with synchronous oligometastatic NSCLC harboring EGFR activating mutation treated with first-line EGFR-TKIs. J Thorac Oncol 2018;13:1383–92. 10.1016/j.jtho.2018.05.019
    1. Mak RH, Doran E, Muzikansky A, et al. . Outcomes After Combined Modality Therapy for EGFR ‐Mutant and Wild‐Type Locally Advanced NSCLC. Oncologist 2011;16:886–95. 10.1634/theoncologist.2011-0040
    1. Gomez DR, Tang C, Zhang J, et al. . Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J Clin Oncol 2019;37:1558–65. 10.1200/JCO.19.00201
    1. Iyengar P, Wardak Z, Gerber DE. Consolidative radiotherapy for limited metastatic non-small-cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol 2018;4:1–4.
    1. Elamin YY, Gomez DR, Antonoff MB, et al. . Local consolidation therapy (lct) after first line tyrosine kinase inhibitor (TKI) for patients with EGFR mutant metastatic non-small-cell lung cancer (NSCLC). Clin Lung Cancer 2019;20:43–7. 10.1016/j.cllc.2018.09.015
    1. Eisenhauer EA, Therasse P, Bogaerts J, et al. . New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47. 10.1016/j.ejca.2008.10.026
    1. Rusch VW, Asamura H, Watanabe H, et al. . The IASLC lung cancer staging project: a proposal for a new international lymph node map in the forthcoming seventh edition of the TNM classification for lung cancer. J Thorac Oncol 2009;4:568–77. 10.1097/JTO.0b013e3181a0d82e
    1. Chaddad A, Desrosiers C, Toews M, et al. . Predicting survival time of lung cancer patients using radiomic analysis. Oncotarget 2017;8:104393–407. 10.18632/oncotarget.22251
    1. Andersen MB, Harders SW, Ganeshan B, et al. . CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer. Acta Radiol 2016;57:669–76. 10.1177/0284185115598808
    1. Dou TH, Coroller TP, van Griethuysen JJM, et al. . Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC. PLoS One 2018;13:e0206108:1–15. 10.1371/journal.pone.0206108
    1. Galanzha EI, Shashkov EV, Kelly T, et al. . In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 2009;4:855–60. 10.1038/nnano.2009.333
    1. Punnoose EA, Atwal S, Liu W, et al. . Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 2012;18:2391–401. 10.1158/1078-0432.CCR-11-3148
    1. Lindsay CR, Faugeroux V, Michiels S, et al. . A prospective examination of circulating tumor cell profiles in non-small-cell lung cancer molecular subgroups. Ann Oncol 2017;28:1523–31. 10.1093/annonc/mdx156
    1. Tamminga M, de Wit S, Schuuring E, et al. . Circulating tumor cells in lung cancer are prognostic and predictive for worse tumor response in both targeted- and chemotherapy. Transl Lung Cancer Res 2019;8:854–61. 10.21037/tlcr.2019.11.06
    1. Pailler E, Oulhen M, Borget I, et al. . Circulating Tumor Cells with Aberrant ALK Copy Number Predict Progression-Free Survival during Crizotinib Treatment in ALK-Rearranged Non-Small Cell Lung Cancer Patients. Cancer Res 2017;77:2222–30. 10.1158/0008-5472.CAN-16-3072
    1. Dingemans A-MC, Hendriks LEL, Berghmans T, et al. . Definition of synchronous oligometastatic non-small cell lung cancer-a consensus report. J Thorac Oncol 2019;14:2109–19. 10.1016/j.jtho.2019.07.025
    1. Froudarakis ME. Pleural effusion in lung cancer: more questions than answers. Respiration 2012;83:367–76. 10.1159/000338169
    1. Saito H, Fukuhara T, Furuya N, et al. . Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol 2019;20:625–35. 10.1016/S1470-2045(19)30035-X

Source: PubMed

3
Abonner