The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling

Juan Meng, Peng Zhou, Yafeng Liu, Feng Liu, Xuelian Yi, Shixi Liu, Gabriele Holtappels, Claus Bachert, Nan Zhang, Juan Meng, Peng Zhou, Yafeng Liu, Feng Liu, Xuelian Yi, Shixi Liu, Gabriele Holtappels, Claus Bachert, Nan Zhang

Abstract

Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by both a chronic inflammation and tissue remodelling; as indicated by extracellular matrix protein deposition, basement membrane thickening, goblet cell hyperplasia and subepithelial edema, with reduced vessels and glands. Although remodelling is generally considered to be consequence of persistent inflammation, the chronological order and relationship between inflammation and remodelling in polyp development is still not clear. The aim of our study was therefore to investigate the pathological features prevalent in the development of nasal polyps and to elucidate the chronological order and relationship between inflammation and remodelling, by comparing specific markers of inflammation and remodelling in early stage nasal polyps confined to the middle turbinate (refer to as middle turbinate CRSwNP) obtained from 5 CRSwNP patients with bilateral polyposis, mature ethmoidal polyps from 6 CRSwNP patients, and normal nasal mucosal tissue from 6 control subjects. Middle turbinate CRSwNP demonstrated significantly more severe epithelial loss compared to mature ethmoidal polyps and normal nasal mucosa. The epithelial cell junction molecules E-cadherin, ZO-1 and occludin were also expressed in significantly lower amounts in mature ethmoidal polyps compared to healthy mucosa. Middle turbinate CRSwNP were further characterized by significantly increased numbers of subepithelial eosinophils and M2 type macrophages, with a distinct lack of collagen and deposition of fibronectin in polyp part. In contrast, the turbinate area of the middle turbinate CRSwNP was characterized by an increase in TGF-β activated myofibroblasts expressing α-SMA and vimentin, an increase in the number of pSmad2 positive cells, as well as increased deposition of collagen. These findings suggest a complex network of processes in the formation of CRSwNP; including gross epithelial damage and repair reactions, eosinophil and macrophage cell infiltration, and tissue remodelling. Furthermore, remodelling appears to occur in parallel, rather than subsequent to inflammation.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Diagram of middle turbinate polyps…
Figure 1. Diagram of middle turbinate polyps in patients with CRSwNP.
As the diagram shows, for the samples of middle turbinate CRSwNP, special attention was paid to the collection of the whole polyp with the stalk and parts of the surrounding mucosa. This allowed us to discriminate into polyp area and turbinate area for analysis.
Figure 2. Epithelial loss (%) in control,…
Figure 2. Epithelial loss (%) in control, mature CRSwNP and middle turbinate CRSwNP.
MT, middle turbinate.
Figure 3. Immunostaining of E-cadherin, ZO-1 and…
Figure 3. Immunostaining of E-cadherin, ZO-1 and occludin in control and mature CRSwNP.
E-cadherin (A, B), ZO-1(C, D), occludin (E, F) for control (A, C, E) and mature CRSwNP (B, D, F).Original magnification 400x.
Figure 4. Quantification of the staining intensity…
Figure 4. Quantification of the staining intensity for E-cadherin, ZO-1 and occludin in control and mature CRSwNP.
Figure 5. Quantification of celluar and extracelluar…
Figure 5. Quantification of celluar and extracelluar components.
Eosinophils(A), CD68-(B), MMR-(C), α-SMA-(D), vimentin-(E), and pSmad2(F) positive cells, Fn (G) and collagen(H) in control interior turbinates (control IT), mature CRSwNP and middle turbinate CRSwNP, separated into turbinate and polyp areas.
Figure 6. Immunostaining of celluar and extracelluar…
Figure 6. Immunostaining of celluar and extracelluar components.
HE (A1-A5), CD68 (B1-B5),MMR (C1-C5), α-SMA (D1-D5), vimentin (E1-E5), pSmad2 (F1-F5), Fn (G1-G5) picrosirius red staining viewed in bright-field (H1-H5) and viewed under polarized light (I1-I5) in mature CRSwNP (A1-G1), polyp area of middle turbinate CRSwNP (A2-G2),turbinate area of middle turbinate CRSwNP (A4-G4) and control mucosa (A5-G5)(final magnification 400×). The overview of middle turbinate CRSwNP was shown in A3-G3 (composed by Photoshop software with pictures in 40×magnification).
Figure 7. α-SMA expression in CRSwNP fibroblasts…
Figure 7. α-SMA expression in CRSwNP fibroblasts as measured by flow cytometry.
Without TGF-β1 stimulation (A), with TGF-β1 stimulation (B), green marks α-SMA positive cells and red marks α-SMA negative cells.
Figure 8. Fn mRNA expression and Fn…
Figure 8. Fn mRNA expression and Fn protein concentration.

References

    1. Bachert C, Gevaert P, Holtappels G, Cuvelier C, van Cauwenberge P (2000) Nasal polyposis: from cytokines to growth. Am J Rhinol 14: 279-290. doi:10.2500/105065800781329573. PubMed: .
    1. Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G et al. (2006) Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 61: 1280-1289. doi:10.1111/j.1398-9995.2006.01225.x. PubMed: .
    1. Van Bruaene N, Perez-Novo CA, Basinski TM, Van Zele T, Holtappels G, et al. (2008) T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol 121: 1435-1441, 1441 e1431-1433
    1. Van Bruaene N, Derycke L, Perez-Novo CA, Gevaert P, Holtappels G, et al. (2009) TGF-beta signaling and collagen deposition in chronic rhinosinusitis. J Allergy Clin Immunol 124: 253-259, e251-252
    1. Li X, Meng J, Qiao X, Liu Y, Liu F et al. (2010) Expression of TGF, matrix metalloproteinases, and tissue inhibitors in Chinese chronic rhinosinusitis. J Allergy Clin Immunol 125: 1061-1068. PubMed: .
    1. Anwar AR, Walsh GM, Cromwell O, Kay AB, Wardlaw AJ (1994) Adhesion to fibronectin primes eosinophils via alpha 4 beta 1 (VLA-4). Immunology 82: 222-228. PubMed: .
    1. Zhang N, Van Zele T, Perez-Novo C, Van Bruaene N, Holtappels G et al. (2008) Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol 122: 961-968. doi:10.1016/j.jaci.2008.07.008. PubMed: .
    1. Lee HM, Kang HJ, Park HH, Hong SC, Kim JK et al. (2009) Effect of peroxisome proliferator-activated receptor gamma agonists on myofibroblast differentiation and collagen production in nasal polyp-derived fibroblasts. Ann Otol Rhinol Laryngol 118: 721-727. PubMed: .
    1. Moon YM, Kang HJ, Cho JS, Park IH, Lee HM (2012) Nox4 mediates hypoxia-stimulated myofibroblast differentiation in nasal polyp-derived fibroblasts. Int Arch Allergy Immunol 159: 399-409. doi:10.1159/000337658. PubMed: .
    1. Serpero L, Petecchia L, Sabatini F, Giuliani M, Silvestri M et al. (2006) The effect of transforming growth factor (TGF)-beta1 and (TGF)-beta2 on nasal polyp fibroblast activities involved upper airway remodeling: modulation by fluticasone propionate. Immunol Lett 105: 61-67. doi:10.1016/j.imlet.2006.01.003. PubMed: .
    1. Wang QP, Jiang MJ, Li ZQ (2006) Effect of myofibroblast accumulation on the formation and development of nasal polyps. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke za Zhi 41: 381-383. PubMed: .
    1. Fokkens W, Lund V, Bachert C, Clement P, Helllings P et al. (2005) EAACI position paper on rhinosinusitis and nasal polyps executive summary. Allergy 60: 583-601. doi:10.1111/j.1398-9995.2005.00830.x. PubMed: .
    1. Barbato A, Turato G, Baraldo S, Bazzan E, Calabrese F et al. (2006) Epithelial damage and angiogenesis in the airways of children with asthma. Am J Respir Crit Care Med 174: 975-981. doi:10.1164/rccm.200602-189OC. PubMed: .
    1. de Boer WI, Sharma HS, Baelemans SM, Hoogsteden HC, Lambrecht BN et al. (2008) Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Can J Physiol Pharmacol 86: 105-112. doi:10.1139/Y08-004. PubMed: .
    1. van Dijk A, Niessen HW, Ursem W, Twisk JW, Visser FC et al. (2008) Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells. Cell Tissue Res 332: 289-298. doi:10.1007/s00441-008-0573-0. PubMed: .
    1. Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S et al. (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113 ( 13): 2363-2374. PubMed: .
    1. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285-293. doi:10.1038/35067088. PubMed: .
    1. Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H et al. (2003) Tight junctions and human diseases. Med. Journal of Electron Microsc 36: 147-156.
    1. Marzioni D, Banita M, Felici A, Paradinas FJ, Newlands E et al. (2001) Expression of ZO-1 and occludin in normal human placenta and in hydatidiform moles. Mol Hum Reprod 7: 279-285. doi:10.1093/molehr/7.3.279. PubMed: .
    1. Norlander T, Westrin KM, Fukami M, Stierna P, Carlsöö B (1996) Experimentally induced polyps in the sinus mucosa: a structural analysis of the initial stages. Laryngoscope 106: 196-203. doi:10.1097/00005537-199602000-00017. PubMed: .
    1. Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, et al.(2012) Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol 130: 1087-1096 e1010
    1. Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8: 193-204. doi:10.1038/nri2275. PubMed: .
    1. Soini Y (2011) Claudins in lung diseases. Respir Res 12: 70. doi:10.1186/1465-9921-12-70. PubMed: .
    1. Wang X, Zhang N, Glorieux S, Holtappels G, Vaneechoutte M et al. (2012) Herpes simplex virus type 1 infection facilitates invasion of Staphylococcus aureus into the nasal mucosa and nasal polyp tissue. PLOS ONE 7: e39875. doi:10.1371/journal.pone.0039875. PubMed: .
    1. Yeo NK, Jang YJ (2010) Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope 120: 346-352. PubMed: .
    1. Evans SM, Blyth DI, Wong T, Sanjar S, West MR (2002) Decreased distribution of lung epithelial junction proteins after intratracheal antigen or lipopolysaccharide challenge: correlation with neutrophil influx and levels of BALF sE-cadherin. Am J Respir Cell Mol Biol 27: 446-454. doi:10.1165/rcmb.4776. PubMed: .
    1. Dutsch-Wicherek M, Tomaszewska R, Lazar A, Strek P, Wicherek L et al. (2010) The evaluation of metallothionein expression in nasal polyps with respect to immune cell presence and activity. BMC Immunol 11: 10. doi:10.1186/1471-2172-11-10. PubMed: .
    1. Polzehl D, Moeller P, Riechelmann H, Perner S (2006) Distinct features of chronic rhinosinusitis with and without nasal polyps. Allergy 61: 1275-1279. doi:10.1111/j.1398-9995.2006.01132.x. PubMed: .
    1. Claeys S, Van Hoecke H, Holtappels G, Gevaert P, De Belder T et al. (2005) Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin Exp Allergy 35: 467-472. doi:10.1111/j.1365-2222.2005.02215.x. PubMed: .
    1. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32: 593-604. doi:10.1016/j.immuni.2010.05.007. PubMed: .
    1. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23-35. doi:10.1038/nri978. PubMed: .
    1. Fairweather D, Cihakova D (2009) Alternatively activated macrophages in infection and autoimmunity. J Autoimmun 33: 222-230. doi:10.1016/j.jaut.2009.09.012. PubMed: .
    1. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181: 3733-3739. PubMed: .
    1. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A et al. (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25: 677-686. doi:10.1016/j.it.2004.09.015. PubMed: .
    1. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177: 7303-7311. PubMed: .
    1. Krysko O, Holtappels G, Zhang N, Kubica M, Deswarte K et al. (2011) Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. Allergy 66: 396-403. doi:10.1111/j.1398-9995.2010.02498.x. PubMed: .
    1. Takabayashi T, Kato A, Peters AT, Hulse KE, Suh LA et al. (2013) Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am J Respir Crit Care Med 187: 49-57. doi:10.1164/rccm.201207-1292OC. PubMed: .
    1. Takabayashi T, Kato A, Peters AT, Hulse KE, Suh LA, et al.(2013) Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 132: 584-592 e584
    1. Nakagawa T, Yamane H, Nakai Y, Shigeta T, Takashima T et al. (1998) Comparative assessment of cell proliferation and accumulation of extracellular matrix in nasal polyps. Acta Otolaryngol Suppl 538: 205-208. PubMed: .
    1. Nakagawa T, Yamane H, Shigeta T, Takashima T, Nakai Y (1999) Interaction between fibronectin and eosinophils in the growth of nasal polyps. Laryngoscope 109: 557-561. doi:10.1097/00005537-199904000-00007. PubMed: .
    1. Shoji S, Ertl RF, Linder J, Romberger DJ, Rennard SI (1990) Bronchial epithelial cells produce chemotactic activity for bronchial epithelial cells. Possible role for fibronectin in airway repair. Am Rev Respir Dis 141: 218-225. doi:10.1164/ajrccm/141.1.218. PubMed: .
    1. Kicic A, Hallstrand TS, Sutanto EN, Stevens PT, Kobor MS et al. (2010) Decreased fibronectin production significantly contributes to dysregulated repair of asthmatic epithelium. Am J Respir Crit Care Med 181: 889-898. doi:10.1164/rccm.200907-1071OC. PubMed: .
    1. Tremble P, Chiquet-Ehrismann R, Werb Z (1994) The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts. Mol Biol Cell 5: 439-453. doi:10.1091/mbc.5.4.439. PubMed: .
    1. Watelet JB, Bachert C, Claeys C, Van Cauwenberge P (2004) Matrix metalloproteinases MMP-7, MMP-9 and their tissue inhibitor TIMP-1: expression in chronic sinusitis vs nasal polyposis. Allergy 59: 54-60. doi:10.1046/j.1398-9995.2003.00364.x. PubMed: .
    1. Anwar AR, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177: 839-843. doi:10.1084/jem.177.3.839. PubMed: .
    1. Wang JH, Kwon HJ, Jang YJ (2009) Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope 119: 1406-1411. doi:10.1002/lary.20498. PubMed: .
    1. Juniantito V, Izawa T, Yuasa T, Ichikawa C, Yamamoto E et al. (2012) Immunophenotypical analyses of myofibroblasts in rat excisional wound healing: possible transdifferentiation of blood vessel pericytes and perifollicular dermal sheath cells into myofibroblasts. Histol Histopathol 27: 515-527. PubMed: .
    1. Desmoulière A, Darby IA, Gabbiani G (2003) Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83: 1689-1707. doi:10.1097/01.LAB.0000101911.53973.90. PubMed: .
    1. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214: 199-210. doi:10.1002/path.2277. PubMed: .
    1. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117: 524-529. doi:10.1172/JCI31487. PubMed: .
    1. Moreira RK (2007) Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med 131: 1728-1734. PubMed: .
    1. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85: 47-64. doi:10.1111/j.0959-9673.2004.00377.x. PubMed: .
    1. Park HH, Park IH, Cho JS, Lee YM, Lee HM (2010) The effect of macrolides on myofibroblast differentiation and collagen production in nasal polyp-derived fibroblasts. Am J Rhinol Allergy 24: 348-353. doi:10.2500/ajra.2010.24.3520. PubMed: .
    1. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465-471. doi:10.1038/37284. PubMed: .
    1. Malmström K, Pelkonen AS, Mäkelä MJ (2013) Remodeling, inflammation and airway responsiveness in early childhood asthma. Curr Opin Allergy Clin Immunol, 13: 203–10. PubMed: .
    1. Payne DN, Rogers AV, Adelroth E, Bandi V, Guntupalli KK et al. (2003) Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med 167: 78-82. doi:10.1164/rccm.200205-414OC. PubMed: .
    1. Van Bruaene N, C PN, Van Crombruggen K, De Ruyck N, Holtappels G et al. (2012) Inflammation and remodelling patterns in early stage chronic rhinosinusitis. Clin Exp Allergy 42: 883-890. PubMed: .

Source: PubMed

3
Abonner