Microcirculation improvement after short-term infusion of vasopressin in septic shock is dependent on noradrenaline

Ana Paula Metran Nascente, Flávio Geraldo Rezende Freitas, Jan Bakker, Antônio Tonete Bafi, Renata Teixeira Ladeira, Luciano Cesar Pontes Azevedo, Alexandre Lima, Flavia Ribeiro Machado, Ana Paula Metran Nascente, Flávio Geraldo Rezende Freitas, Jan Bakker, Antônio Tonete Bafi, Renata Teixeira Ladeira, Luciano Cesar Pontes Azevedo, Alexandre Lima, Flavia Ribeiro Machado

Abstract

Objectives: To assess the impact of vasopressin on the microcirculation and to develop a predictive model to estimate the probability of microcirculatory recruitment in patients with septic shock.

Methods: This prospective interventional study included patients with septic shock receiving noradrenaline for less than 48 hours. We infused vasopressin at 0.04 U/min for one hour. Hemodynamic measurements, including sidestream dark-field imaging, were obtained immediately before vasopressin infusion, 1 hour after vasopressin infusion and 1 hour after vasopressin withdrawal. We defined patients with more than a 10% increase in total vascular density and perfused vascular density as responders. ClinicalTrials.gov: NCT02053675.

Results: Eighteen patients were included, and nine (50%) showed improved microcirculation after infusion of vasopressin. The noradrenaline dose was significantly reduced after vasopressin (p=0.001) and was higher both at baseline and during vasopressin infusion in the responders than in the non-responders. The strongest predictor for a favorable microcirculatory response was the dose of noradrenaline at baseline (OR=4.5; 95% CI: 1.2-17.0; p=0.027). For patients using a noradrenaline dose higher than 0.38 mcg/kg/min, the probability that microcirculatory perfusion would be improved with vasopressin was 53% (sensitivity 78%, specificity 77%).

Conclusions: In patients with septic shock for no longer than 48 h, administration of vasopressin is likely to result in an improvement in microcirculation when the baseline noradrenaline dose is higher than 0.38 mcg/kg/min.

Conflict of interest statement

No potential conflict of interest was reported.

Figures

Figure 1
Figure 1
Probability of microcirculatory response based on a dose of noradrenaline at T0 (logarithmic scale). The dotted line shows the threshold value of the predicted probability of 53% for patients receiving a noradrenaline dose higher than 0.38 mcg/kg/min (78% sensitivity and 77% specificity).

References

    1. Jones SB, Romano FD. Myocardial beta adrenergic receptor coupling to adenylate cyclase during developing septic shock. Circ Shock. 1990;30((1)):51–61.
    1. Chernow B, Roth BL. Pharmacologic manipulation of the peripheral vasculature in shock: clinical and experimental approaches. Circ Shock. 1986;18((2)):141–55.
    1. Cronin RE, Erickson AM, de Torrente A, McDonald KM, Schrier RW. Norepinephrine-induced acute renal failure: a reversible ischemic model of acute renal failure. Kidney Int. 1978;14((2)):187–90. doi: 10.1038/ki.1978.106.
    1. De Backer D, Creteur J, Silva E, Vincent JL. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best. Crit Care Med. 2003;31((6)):1659–67. doi: 10.1097/01.CCM.0000063045.77339.B6.
    1. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L. Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med. 1997;25((3)):399–404. doi: 10.1097/00003246-199703000-00005.
    1. Meier-Hellmann A, Bredle DL, Specht M, Spies C, Hannemann L, Reinhart K. The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients with septic shock. Intensive Care Med. 1997;23((1)):31–7. doi: 10.1007/s001340050287.
    1. Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42((9)):1387–97. doi: 10.1007/s00134-016-4249-z.
    1. Belletti A, Castro ML, Silvetti S, Greco T, Biondi-Zoccai G, Pasin L, et al. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br J Anaesth. 2015;115((5)):656–75. doi: 10.1093/bja/aev284.
    1. Belletti A, Musu M, Silvetti S, Saleh O, Pasin L, Monaco F, et al. Non-Adrenergic Vasopressors in Patients with or at Risk for Vasodilatory Shock. A Systematic Review and Meta-Analysis of Randomized Trials. PLoS One. 2015;10((11)):e0142605. doi: 10.1371/journal.pone.0142605.
    1. Oba Y, Lone NA. Mortality benefit of vasopressor and inotropic agents in septic shock: a Bayesian network meta-analysis of randomized controlled trials. J Crit Care. 2014;29((5)):706–10. doi: 10.1016/j.jcrc.2014.04.011.
    1. Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial. JAMA. 2016;316((5)):509–18. doi: 10.1001/jama.2016.10485.
    1. Tsuneyoshi I, Yamada H, Kakihana Y, Nakamura M, Nakano Y, Boyle WA. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med. 2001;29((3)):487–93. doi: 10.1097/00003246-200103000-00004. 3rd.
    1. Landry DW, Levin HR, Gallant EM, Ashton RC, Jr, Seo S, D’Alessandro D, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95((5)):1122–5. doi: 10.1161/01.CIR.95.5.1122.
    1. Malay MB, Ashton RC, Jr, Landry DW, Townsend RN. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma. 1999;47((4)):699–703. discussion 703-5.
    1. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27((8)):1416–21. doi: 10.1007/s001340101014.
    1. Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96((3)):576–82. doi: 10.1097/00000542-200203000-00011.
    1. Argenziano M, Chen JM, Choudhri AF, Cullinane S, Garfein E, Weinberg AD, et al. Management of vasodilatory shock after cardiac surgery: identification of predisposing factors and use of a novel pressor agent. J Thorac Cardiovasc Surg. 1998;116((6)):973–80. doi: 10.1016/S0022-5223(98)70049-2.
    1. De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010;16((3)):250–4. doi: 10.1097/MCC.0b013e3283383621.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166((1)):98–104. doi: 10.1164/rccm.200109-016OC.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32((9)):1825–31. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory Alterations in Patients With Severe Sepsis: Impact of Time of Assessment and Relationship With Outcome. Crit Care Med. 2013;41((3)):791–9. doi: 10.1097/CCM.0b013e3182742e8b.
    1. Dunser MW, Mayr AJ, Tur A, Pajk W, Barbara F, Knotzer H, et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31((5)):1394–8. doi: 10.1097/01.CCM.0000059722.94182.79.
    1. Luckner G, Dunser MW, Stadlbauer KH, Mayr VD, Jochberger S, Wenzel V, et al. Cutaneous vascular reactivity and flow motion response to vasopressin in advanced vasodilatory shock and severe postoperative multiple organ dysfunction syndrome. Crit Care. 2006;10((2)):R40. doi: 10.1186/cc4845.
    1. Dunser MW, Mayr AJ, Stallinger A, Ulmer H, Ritsch N, Knotzer H, et al. Cardiac performance during vasopressin infusion in postcardiotomy shock. Intensive Care Med. 2002;28((6)):746–51. doi: 10.1007/s00134-002-1265-y.
    1. Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36((1)):83–91. doi: 10.1007/s00134-009-1687-x.
    1. Ertmer C, Rehberg S, Westphal M. Vasopressin analogues in the treatment of shock states: potential pitfalls. Best Pract Res Clin Anaesthesiol. 2008;22((2)):393–406. doi: 10.1016/j.bpa.2008.02.007.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101((6)):1644–55. doi: 10.1378/chest.101.6.1644.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315((8)):801–10. doi: 10.1001/jama.2016.0287.
    1. De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11((5)):R101. doi: 10.1186/cc6118.
    1. Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34((12)):2210–7. doi: 10.1007/s00134-008-1193-6.
    1. Morelli A, Donati A, Ertmer C, Rehberg S, Kampmeier T, Orecchioni A, et al. Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Crit Care. 2011;15((5)):R217. doi: 10.1186/cc10453.
    1. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358((9)):877–87. doi: 10.1056/NEJMoa067373.
    1. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34((2)):403–8. doi: 10.1097/01.CCM.0000198107.61493.5A.
    1. Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37((6)):1961–6. doi: 10.1097/CCM.0b013e3181a00a1c.
    1. Dubin A, Pozo MO, Casabella CA, Palizas F, Jr, Murias G, Moseinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13((3)):R92. doi: 10.1186/cc7922.
    1. Wenisch C, Parschalk B, Weiss A, Zedwitz-Liebenstein K, Hahsler B, Wenisch H, et al. High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production. Clin Diagn Lab Immunol. 1996;3((4)):423–8.
    1. Kohm AP, Sanders VM. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev. 2001;53((4)):487–525.
    1. Torgersen C, Dunser MW, Wenzel V, Jochberger S, Mayr V, Schmittinger CA, et al. Comparing two different arginine vasopressin doses in advanced vasodilatory shock: a randomized, controlled, open-label trial. Intensive Care Med. 2010;36((1)):57–65. doi: 10.1007/s00134-009-1630-1.

Source: PubMed

3
Abonner