Magnetic Resonance Elastography Shear Wave Velocity Correlates with Liver Fibrosis and Hepatic Venous Pressure Gradient in Adults with Advanced Liver Disease

Ahmed M Gharib, Ma Ai Thanda Han, Eric G Meissner, David E Kleiner, Xiongce Zhao, Mary McLaughlin, Lindsay Matthews, Bisharah Rizvi, Khaled Z Abd-Elmoniem, Ralph Sinkus, Elliot Levy, Christopher Koh, Robert P Myers, G Mani Subramanian, Shyam Kottilil, Theo Heller, Joseph A Kovacs, Caryn G Morse, Ahmed M Gharib, Ma Ai Thanda Han, Eric G Meissner, David E Kleiner, Xiongce Zhao, Mary McLaughlin, Lindsay Matthews, Bisharah Rizvi, Khaled Z Abd-Elmoniem, Ralph Sinkus, Elliot Levy, Christopher Koh, Robert P Myers, G Mani Subramanian, Shyam Kottilil, Theo Heller, Joseph A Kovacs, Caryn G Morse

Abstract

Background. Portal hypertension, an elevation in the hepatic venous pressure gradient (HVPG), can be used to monitor disease progression and response to therapy in cirrhosis. Since obtaining HVPG measurements is invasive, reliable noninvasive methods of assessing portal hypertension are needed. Methods. Noninvasive markers of fibrosis, including magnetic resonance elastography (MRE) shear wave velocity, were correlated with histologic fibrosis and HVPG measurements in hepatitis C (HCV) and/or HIV-infected patients with advanced liver disease enrolled in a clinical trial of treatment with simtuzumab, an anti-LOXL2 antibody. Results. This exploratory analysis includes 23 subjects: 9 with HCV monoinfection, 9 with HIV and HCV, and 5 with HIV and nonalcoholic steatohepatitis. Median Ishak fibrosis score was 4 (range 1-6); 11 subjects (48%) had cirrhosis. Median HVPG was 6 mmHg (range 3-16). Liver stiffness measured by MRE correlated with HVPG (r = 0.64, p = 0.01), histologic fibrosis score (r = 0.71, p = 0.004), noninvasive fibrosis indices, including APRI (r = 0.81, p < 0.001), and soluble LOXL2 (r = 0.82, p = 0.001). On stepwise multivariate regression analysis, MRE was the only variable independently associated with HVPG (R2 = 0.377, p = 0.02). Conclusions. MRE of the liver correlated independently with HVPG. MRE is a valid noninvasive measure of liver disease severity and may prove to be a useful tool for noninvasive portal hypertension assessment. Trial Registration Number. This trial is registered with NCT01707472.

Figures

Figure 1
Figure 1
Significant correlations were seen between MRE-measured shear wave velocity, a measure of liver stiffness, and HVPG (a), sLOXL2 (c), and liver LOXL2 (d). sLOXL2 also correlated well with HVPG (b).

References

    1. Lozano R., Naghavi M., Foreman K., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2095–2128.
    1. Ripoll C., Bañares R., Rincón D., et al. Influence of hepatic venous pressure gradient on the prediction of survival of patients with cirrhosis in the MELD era. Hepatology. 2005;42(4):793–801. doi: 10.1002/hep.20871.
    1. Turnes J., Garcia-Pagan J. C., Abraldes J. G., Hernandez-Guerra M., Dell'Era A., Bosch J. Pharmacological reduction of portal pressure and long-term risk of first variceal bleeding in patients with cirrhosis. The American Journal of Gastroenterology. 2006;101(3):506–512. doi: 10.1111/j.1572-0241.2006.00453.x.
    1. Zipprich A., Garcia-Tsao G., Rogowski S., Fleig W. E., Seufferlein T., Dollinger M. M. Prognostic indicators of survival in patients with compensated and decompensated cirrhosis. Liver International. 2012;32(9):1407–1414. doi: 10.1111/j.1478-3231.2012.02830.x.
    1. Groszmann R. J., Garcia-Tsao G., Bosch J., et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. New England Journal of Medicine. 2005;353(21):2254–2261. doi: 10.1056/NEJMoa044456.
    1. Bosch J., Abraldes J. G., Berzigotti A., García-Pagan J. C. The clinical use of HVPG measurements in chronic liver disease. Nature Reviews Gastroenterology and Hepatology. 2009;6(10):573–582. doi: 10.1038/nrgastro.2009.149.
    1. Deng H., Qi X., Guo X. Diagnostic accuracy of APRI, AAR, FIB-4, FI, king, lok, forns, and fibroindex scores in predicting the presence of esophageal varices in liver cirrhosis: a systematic review and meta-analysis. Medicine. 2015;94(42) doi: 10.1097/md.0000000000001795.e1795
    1. Choi Y. J., Baik S. K., Park D. H., et al. Comparison of Doppler ultrasonography and the hepatic venous pressure gradient in assessing portal hypertension in liver cirrhosis. Journal of Gastroenterology and Hepatology. 2003;18(4):424–429. doi: 10.1046/j.1440-1746.2003.02992.x.
    1. Kim Y. J., Raman S. S., Yu N. C., To'o K. J., Jutabha R., Lu D. S. K. Esophageal varices in cirrhotic patients: evaluation with liver CT. American Journal of Roentgenology. 2007;188(1):139–144. doi: 10.2214/ajr.05.1737.
    1. Annet L., Materne R., Danse E., Jamart J., Horsmans Y., Van Beers B. E. Hepatic flow parameters measured with MR imaging and doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology. 2003;229(2):409–414. doi: 10.1148/radiol.2292021128.
    1. Bureau C., Metivier S., Peron J. M., et al. Transient elastography accurately predicts presence of significant portal hypertension in patients with chronic liver disease. Alimentary Pharmacology and Therapeutics. 2008;27(12):1261–1268. doi: 10.1111/j.1365-2036.2008.03701.x.
    1. Robic M. A., Procopet B., Métivier S., et al. Liver stiffness accurately predicts portal hypertension related complications in patients with chronic liver disease: a prospective study. Journal of Hepatology. 2011;55(5):1017–1024. doi: 10.1016/j.jhep.2011.01.051.
    1. Castéra L., Foucher J., Bernard P.-H., et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology. 2010;51(3):828–835. doi: 10.1002/hep.23425.
    1. Yin M., Glaser K. J., Talwalkar J. A., Chen J., Manduca A., Ehman R. L. Hepatic MR elastography: clinical performance in a series of 1377 consecutive examinations1. Radiology. 2016;278(1):114–124. doi: 10.1148/radiol.2015142141.
    1. Shin S. U., Lee J.-M., Yu M. H., et al. Prediction of esophageal varices in patients with cirrhosis: usefulness of three-dimensional MR elastography with echo-planar imaging technique. Radiology. 2014;272(1):143–153. doi: 10.1148/radiol.14130916.
    1. Singh S., Venkatesh S. K., Keaveny A., et al. Diagnostic accuracy of magnetic resonance elastography in liver transplant recipients: a pooled analysis. Annals of Hepatology. 2016;15(3):363–376. doi: 10.5604/16652681.1198808.
    1. Huwart L., Sempoux C., Vicaut E., et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology. 2008;135(1):32–40. doi: 10.1053/j.gastro.2008.03.076.
    1. Ichikawa S., Motosugi U., Morisaka H., et al. Comparison of the diagnostic accuracies of magnetic resonance elastography and transient elastography for hepatic fibrosis. Magnetic Resonance Imaging. 2015;33(1):26–30. doi: 10.1016/j.mri.2014.10.003.
    1. Yin M., Kolipaka A., Woodrum D. A., et al. Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model. Journal of Magnetic Resonance Imaging. 2013;38(4):809–815. doi: 10.1002/jmri.24049.
    1. Ronot M., Lambert S., Elkrief L., et al. Assessment of portal hypertension and high-risk oesophageal varices with liver and spleen three-dimensional multifrequency MR elastography in liver cirrhosis. European Radiology. 2014;24(6):1394–1402. doi: 10.1007/s00330-014-3124-y.
    1. Cholongitas E., Papatheodoridis G. V., Vangeli M., Terreni N., Patch D., Burroughs A. K. Systematic review: the model for end-stage liver disease—should it replace Child-Pugh's classification for assessing prognosis in cirrhosis? Alimentary Pharmacology & Therapeutics. 2005;22(11-12):1079–1089. doi: 10.1111/j.1365-2036.2005.02691.x.
    1. Meissner E. G., McLaughlin M., Matthews L., et al. Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial. Liver International. 2016;36(12):1783–1792. doi: 10.1111/liv.13177.
    1. Ishak K., Baptista A., Bianchi L., et al. Histological grading and staging of chronic hepatitis. Journal of Hepatology. 1995;22(6):696–699. doi: 10.1016/0168-8278(95)80226-6.
    1. Kleiner D. E., Brunt E. M., Van Natta M., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701.
    1. Kweon Y.-O., Goodman Z. D., Dienstag J. L., et al. Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. Journal of Hepatology. 2001;35(6):749–755. doi: 10.1016/s0168-8278(01)00218-5.
    1. Herzka D. A., Kotys M. S., Sinkus R., Pettigrew R. I., Gharib A. M. Magnetic resonance elastography in the liver at 3 Tesla using a second harmonic approach. Magnetic Resonance in Medicine. 2009;62(2):284–291. doi: 10.1002/mrm.21956.
    1. Wai C.-T., Greenson J. K., Fontana R. J., et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38(2):518–526. doi: 10.1053/jhep.2003.50346.
    1. Sterling R. K., Lissen E., Clumeck N., et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317–1325. doi: 10.1002/hep.21178.
    1. Forns X., Ampurdanès S., Llovet J. M., et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 2002;36(4, part 1):986–992. doi: 10.1016/s0270-9139(02)00107-6.
    1. Koda M., Matunaga Y., Kawakami M., Kishimoto Y., Suou T., Murawaki Y. Fibroindex, a practical index for predicting significant fibrosis in patients with chronic hepatitis C. Hepatology. 2007;45(2):297–306. doi: 10.1002/hep.21520.
    1. Meissner E. G., Wu D., Osinusi A., et al. Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome. The Journal of Clinical Investigation. 2014;124(8):3352–3363. doi: 10.1172/jci75938.
    1. Rockey D. C., Caldwell S. H., Goodman Z. D., Nelson R. C., Smith A. D., American Association for the Study of Liver Diseases Liver biopsy. Hepatology. 2009;49(3):1017–1044.
    1. Nedredal G. I., Yin M., McKenzie T., et al. Portal hypertension correlates with splenic stiffness as measured with MR elastography. Journal of Magnetic Resonance Imaging. 2011;34(1):79–87. doi: 10.1002/jmri.22610.
    1. Hirsch S., Guo J., Reiter R., et al. Towards compression-sensitive magnetic resonance elastography of the liver: sensitivity of harmonic volumetric strain to portal hypertension. Journal of Magnetic Resonance Imaging. 2014;39(2):298–306. doi: 10.1002/jmri.24165.
    1. Loomba R., Wolfson T., Ang B., et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology. 2014;60(6):1920–1928. doi: 10.1002/hep.27362.
    1. Huwart L., Sempoux C., Salameh N., et al. Liver fibrosis: Noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology. 2007;245(2):458–466. doi: 10.1148/radiol.2452061673.
    1. Loomba R., Cui J., Wolfson T., et al. Novel 3D magnetic resonance elastography for the noninvasive diagnosis of advanced fibrosis in NAFLD: a prospective study. The American Journal of Gastroenterology. 2016;111(7):986–994. doi: 10.1038/ajg.2016.65.
    1. Arena U., Vizzutti F., Corti G., et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology. 2008;47(2):380–384. doi: 10.1002/hep.22007.
    1. Tomasek J. J., Gabbiani G., Hinz B., Chaponnier C., Brown R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology. 2002;3(5):349–363. doi: 10.1038/nrm809.
    1. Carpino G., Morini S., Ginanni Corradini S., et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Digestive and Liver Disease. 2005;37(5):349–356. doi: 10.1016/j.dld.2004.11.009.
    1. Chu C.-M., Shyu W.-C., Liaw Y.-F. Comparative studies on expression of α-smooth muscle actin in hepatic stellate cells in chronic hepatitis B and C. Digestive Diseases and Sciences. 2008;53(5):1364–1369. doi: 10.1007/s10620-007-9997-8.
    1. Laleman W., Van Landeghem L., Severi T., et al. Both Ca2+-dependent and -independent pathways are involved in rat hepatic stellate cell contraction and intrahepatic hyperresponsiveness to methoxamine. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2007;292(2):G556–G564. doi: 10.1152/ajpgi.00196.2006.
    1. Melton A. C., Datta A., Yee H. F., Jr. [Ca2+]i-independent contractile force generation by rat hepatic stellate cells in response to endothelin-1. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2006;290(1):G7–G13. doi: 10.1152/ajpgi.00337.2005.
    1. Novo E., Cannito S., Morello E., et al. Hepatic myofibroblasts and fibrogenic progression of chronic liver diseases. Histology and Histopathology. 2015;30(9):1011–1032. doi: 10.4670/HH-11-623.
    1. Duong H. T. T., Dong Z. X., Su L., et al. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small. 2015;11(19):2291–2304. doi: 10.1002/smll.201402870.
    1. Barry-Hamilton V., Spangler R., Marshall D., et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nature Medicine. 2010;16(9):1009–1017. doi: 10.1038/nm.2208.
    1. Wipff P.-J., Rifkin D. B., Meister J.-J., Hinz B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. Journal of Cell Biology. 2007;179(6):1311–1323. doi: 10.1083/jcb.200704042.
    1. Barker H. E., Bird D., Lang G., Erler J. T. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling. Molecular Cancer Research. 2013;11(11):1425–1436. doi: 10.1158/1541-7786.mcr-13-0033-t.

Source: PubMed

3
Abonner