Circulating microRNAs and prediction of asthma exacerbation in childhood asthma

Alvin T Kho, Michael J McGeachie, Kip G Moore, Jody M Sylvia, Scott T Weiss, Kelan G Tantisira, Alvin T Kho, Michael J McGeachie, Kip G Moore, Jody M Sylvia, Scott T Weiss, Kelan G Tantisira

Abstract

Background: Circulating microRNAs have shown promise as non-invasive biomarkers and predictors of disease activity. Prior asthma studies using clinical, biochemical and genomic data have not shown excellent prediction of exacerbation. We hypothesized that a panel of circulating microRNAs in a pediatric asthma cohort combined with an exacerbation clinical score might predict exacerbation better than the latter alone.

Methods: Serum samples from 153 children at randomization in the Childhood Asthma Management Program were profiled for 754 microRNAs. Data dichotomized for asthma exacerbation one year after randomization to inhaled corticosteroid treatment were used for binary logistic regression with miRNA expressions and exacerbation clinical score.

Results: 12 of 125 well-detected circulating microRNAs had significant odd ratios for exacerbation with miR-206 being most significant. Each doubling of expression of the 12 microRNA corresponded to a 25-67% increase in exacerbation risk. Stepwise logistic regression yielded a 3-microRNA model (miR-146b, miR-206 and miR-720) that, combined with the exacerbation clinical score, had excellent predictive power with a 0.81 AUROC. These 3 microRNAs were involved in NF-kβ and GSK3/AKT pathways.

Conclusions: This combined circulating microRNA-clinical score model predicted exacerbation in asthmatic subjects on inhaled corticosteroids better than each constituent feature alone.

Trial registration: ClinicalTrials.gov Identifier: NCT00000575 .

Keywords: Asthma exacerbation; Biomarker; Circulating microRNA.

Conflict of interest statement

Ethics approval and consent to participate

The CAMP Genetics Ancillary Study was approved by the Brigham and Women’s Hospital Internal Review Board, protocol # 2015P001622/BWH. Informed consent and assent was obtained from parents and participants respectively.

Competing interests

The authors declare that they have no conflicting interests for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Univariate logistic regression models for miR-206 expression (Panel a) and asthma exacerbation clinical score (Panel b) relative to exacerbation. The horizontal axis represents the miRNA cycle threshold and asthma exacerbation clinical score for panels a and b, respectively. The right vertical axis represents number of patients. In each panel, the top (inverted) histogram represents subjects who had an exacerbation and the bottom histogram represents subjects who did not have an exacerbation. The red line represents the unadjusted logistic regression function with probability of exacerbation on the left vertical axis. For instance in panel a, as the miR-206 cycle threshold increases (abundance in blood decreases), the risk of asthma exacerbation decreases. Whereas in panel b, as the asthma exacerbation clinical score increases, the risk of asthma exacerbation increases
Fig. 2
Fig. 2
Comparison of Receiver Operator Characteristic curves between 3 models. Asthma exacerbation clinical score (blue), miRNA (red) and combined (miRNA and clinical score, green) models in the testing set data. AUROCs were 0.671, 0.714, and 0.807, respectively. A linear LOESS smoothing function was applied with 95% confidence interval shown

References

    1. Fanta CH. Asthma. N Engl J Med. 2009;360(10):1002–1014. doi: 10.1056/NEJMra0804579.
    1. Bahadori K, Doyle-Waters MM, Marra C, Lynd L, Alasaly K, Swiston J, FitzGerald JM. Economic burden of asthma: a systematic review. BMC Pulm Med. 2009;9:24. doi: 10.1186/1471-2466-9-24.
    1. Jang J, Gary Chan KC, Huang H, Sullivan SD. Trends in cost and outcomes among adult and pediatric patients with asthma: 2000-2009. Ann Allergy Asthma Immunol. 2013;111(6):516–522. doi: 10.1016/j.anai.2013.09.007.
    1. Bonilla S, Kehl S, Kwong KY, Morphew T, Kachru R, Jones CA. School absenteeism in children with asthma in a Los Angeles inner city school. J Pediatr. 2005;147(6):802–806. doi: 10.1016/j.jpeds.2005.06.041.
    1. Akinbami LJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States. Natl Health Stat Report. 2005;2011(32):1–14.
    1. Moorman JE, Rudd RA, Johnson CA, King M, Minor P, Bailey C, Scalia MR, Akinbami LJ. Centers for disease C, prevention: national surveillance for asthma--United States, 1980-2004. MMWR Surveill Summ. 2007;56(8):1–54.
    1. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O'Byrne P, Pedersen SE, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143–178. doi: 10.1183/09031936.00138707.
    1. Robroeks CM, van Vliet D, Jobsis Q, Braekers R, Rijkers GT, Wodzig WK, Bast A, Zimmermann LJ, Dompeling E. Prediction of asthma exacerbations in children: results of a one-year prospective study. Clin Exp Allergy. 2012;42(5):792–798. doi: 10.1111/j.1365-2222.2012.03992.x.
    1. van Vliet D, Alonso A, Rijkers G, Heynens J, Rosias P, Muris J, Jobsis Q, Dompeling E. Prediction of asthma exacerbations in children by innovative exhaled inflammatory markers: results of a longitudinal study. PLoS One. 2015;10(3):e0119434. doi: 10.1371/journal.pone.0119434.
    1. Haselkorn T, Zeiger RS, Chipps BE, Mink DR, Szefler SJ, Simons FE, Massanari M, Fish JE. Recent asthma exacerbations predict future exacerbations in children with severe or difficult-to-treat asthma. J Allergy Clin Immunol. 2009;124(5):921–927. doi: 10.1016/j.jaci.2009.09.006.
    1. Xu M, Tantisira KG, Wu A, Litonjua AA, Chu JH, Himes BE, Damask A, Weiss ST. Genome wide association study to predict severe asthma exacerbations in children using random forests classifiers. BMC Med Genet. 2011;12:90. doi: 10.1186/1471-2350-12-90.
    1. Forno E, Celedon JC. Predicting asthma exacerbations in children. Curr Opin Pulm Med. 2012;18(1):63–69. doi: 10.1097/MCP.0b013e32834db288.
    1. Hoy AM, Buck AH. Extracellular small RNAs: what, where, why? Biochem Soc Trans. 2012;40(4):886–890. doi: 10.1042/BST20120019.
    1. Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9(6):850–859. doi: 10.4161/rna.20378.
    1. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110(3):483–495. doi: 10.1161/CIRCRESAHA.111.247452.
    1. Duong Van Huyen JP, Tible M, Gay A, Guillemain R, Aubert O, Varnous S, Iserin F, Rouvier P, Francois A, Vernerey D, et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J. 2014;35(45):3194–3202. doi: 10.1093/eurheartj/ehu346.
    1. Inns J, James V. Circulating microRNAs for the prediction of metastasis in breast cancer patients diagnosed with early stage disease. Breast. 2015;24(4):364–369. doi: 10.1016/j.breast.2015.04.001.
    1. Flowers E, Aouizerat BE, Abbasi F, Lamendola C, Grove KM, Fukuoka Y, Reaven GM. Circulating microRNA-320a and microRNA-486 predict thiazolidinedione response: moving towards precision health for diabetes prevention. Metabolism. 2015;64(9):1051–1059. doi: 10.1016/j.metabol.2015.05.013.
    1. Wang Y, Yang L, Li P, Huang H, Liu T, He H, Lin Z, Jiang Y, Ren N, Wu B, et al. Circulating microRNA signatures associated with childhood asthma. Clin Lab. 2015;61(5–6):467–474.
    1. Panganiban RP, Pinkerton MH, Maru SY, Jefferson SJ, Roff AN, Ishmael FT. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol. 2012;1(2):154–165.
    1. Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol. 2012;47(4):536–542. doi: 10.1165/rcmb.2011-0160OC.
    1. Panganiban RP, Wang Y, Howrylak J, Chinchilli VM, Craig TJ, August A, Ishmael FT. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137(5):1423–1432. doi: 10.1016/j.jaci.2016.01.029.
    1. The Childhood Asthma Management Program (CAMP) Design, rationale, and methods. Childhood Asthma Management Program Research Group. Control Clin Trials. 1999;20(1):91–120. doi: 10.1016/S0197-2456(98)00044-0.
    1. Forno E, Fuhlbrigge A, Soto-Quiros ME, Avila L, Raby BA, Brehm J, Sylvia JM, Weiss ST, Celedon JC. Risk factors and predictive clinical scores for asthma exacerbations in childhood. Chest. 2010;138(5):1156–1165. doi: 10.1378/chest.09-2426.
    1. Recruitment of participants in the childhood Asthma Management Program (CAMP) I. Description of methods: Childhood asthma management program research group. J Asthma. 1999;36(3):217–237. doi: 10.3109/02770909909075406.
    1. Kho AT, Sharma S, Davis JS, Spina J, Howard D, McEnroy K, Moore K, Sylvia J, Qiu W, Weiss ST, et al. Circulating MicroRNAs: association with lung function in asthma. PLoS One. 2016;11(6):e0157998. doi: 10.1371/journal.pone.0157998.
    1. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–D158.
    1. Huang RS, Gamazon ER, Ziliak D, Wen Y, Im HK, Zhang W, Wing C, Duan S, Bleibel WK, Cox NJ, et al. Population differences in microRNA expression and biological implications. RNA Biol. 2011;8(4):692–701. doi: 10.4161/rna.8.4.16029.
    1. National Asthma E Prevention P Expert panel report 3 (EPR-3): guidelines for the diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol. 2007;120(5):S94–138. doi: 10.1016/j.jaci.2007.09.029.
    1. R Core Team R . A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.
    1. Lele SR, JLK PS. ResourceSelection: resource selection (probability) functions for use-availability data. R Package Version. 2016;0:2–6.
    1. Achim Zeileis TH. Diagnostic checking in regression relationships. R News. 2002;2(3):7–10.
    1. MCfJW K, Weston S, Williams A, Chris KAE, Cooper T, Mayer Z, Kenkel B, The R, Core Team MB. Lescarbeau R, Ziem A, Scrucca L, YTaC C. Caret: classification and regression training. R Package Version. 2016;6:0–64.
    1. Xavier Robin NT, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi: 10.1186/1471-2105-12-77.
    1. Sing T, OS NB, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21(20):7881. doi: 10.1093/bioinformatics/bti623.
    1. MP ELD, van der Laan M. CvAUC: Cross-Validated Area Under the ROC Curve Confidence Intervals. R Package Version. 2014;1.1.0. .
    1. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239–D247. doi: 10.1093/nar/gkv1258.
    1. Huang d W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi: 10.1038/nprot.2008.211.
    1. Chalise SP, Bhatta NK, Singh RR, Prasad MS, Poudel P. Assessment of control of bronchial asthma in children using childhood asthma control test. Indian J Chest Dis Allied Sci. 2014;56(2):75–78.
    1. Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2014;307(9):L727–L734. doi: 10.1152/ajplung.00174.2014.
    1. Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Arnould T, Deroanne C, Piette J, Cataldo D, et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One. 2011;6(1):e16509. doi: 10.1371/journal.pone.0016509.
    1. Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132(1):3–13. doi: 10.1016/j.jaci.2013.04.039.
    1. Collison A, Siegle JS, Hansbro NG, Kwok CT, Herbert C, Mattes J, Hitchins M, Foster PS, Kumar RK. Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma. Dis Model Mech. 2013;6(4):993–1000. doi: 10.1242/dmm.011247.
    1. Clifford RL, Singer CA, John AE. Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function. Pulm Pharmacol Ther. 2013;26(1):75–85. doi: 10.1016/j.pupt.2012.07.002.
    1. Bentley JK, Deng H, Linn MJ, Lei J, Dokshin GA, Fingar DC, Bitar KN, Henderson WR, Jr, Hershenson MB. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(beta) phosphorylation in a mouse model of asthma. Am J Physiol Lung Cell Mol Physiol. 2009;296(2):L176–L184. doi: 10.1152/ajplung.90376.2008.
    1. Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568–1575. doi: 10.3390/molecules19021568.
    1. Shaughnessy RG, Farrell D, Riepema K, Bakker D, Gordon SV. Analysis of biobanked serum from a Mycobacterium avium subsp paratuberculosis bovine infection model confirms the remarkable stability of circulating miRNA profiles and defines a bovine serum miRNA repertoire. PLoS One. 2015;10(12):e0145089. doi: 10.1371/journal.pone.0145089.

Source: PubMed

3
Abonner