Germline testing and genetic counselling in prostate cancer

Jessica Russo, Veda N Giri, Jessica Russo, Veda N Giri

Abstract

Genetic testing for prostate cancer is rapidly growing and is increasingly being driven by precision medicine. Rates of germline pathogenic variants have been reported in up to 15% of men with prostate cancer, particularly in metastatic disease, and results of genetic testing could uncover options for precision therapy along with a spectrum of hereditary cancer-predisposition syndromes with unique clinical features that have complex management options. Thus, the pre-test discussion, whether delivered by genetic counsellors or by health-care professionals in hybrid models, involves information on hereditary cancer risk, extent of gene testing, purpose of testing, medical history and family history, potential types of results, additional cancer risks that might be uncovered, genetically based management and effect on families. Understanding precision medicine, personalized cancer risk management and syndrome-related cancer risk management is important in order to develop collaborative strategies with genetic counselling for optimal care of patients and their families.

Conflict of interest statement

The authors declare no competing interests.

© 2022. Springer Nature Limited.

Figures

Fig. 1. Genetic evaluation process for patients…
Fig. 1. Genetic evaluation process for patients with or at risk of developing prostate cancer.
The process and elements involved in pre-test counselling and informed consent, genetic testing and post-test disclosure. Special considerations in each step in the process and unique clinical and psychosocial concerns that can influence decision-making are shown. ADT, androgen-deprivation therapy; GINA, Genetic Information Nondiscrimination Act; VUS, variants of uncertain significance.

References

    1. National Cancer Institute. Genetics of Prostate Cancer (PDQ®) – Health Professional Version. NIH (2022).
    1. Giri VN, et al. Implementation of germline testing for prostate cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J. Clin. Oncol. 2020;38:2798–2811. doi: 10.1200/JCO.20.00046.
    1. LaDuca H, et al. A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genet. Med. 2020;22:407–415. doi: 10.1038/s41436-019-0633-8.
    1. Cheng HH, et al. Germline and somatic mutations in prostate cancer for the clinician. J. Natl Compr. Cancer Netw. 2019;17:515–521. doi: 10.6004/jnccn.2019.7307.
    1. de Bono J, et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2020;382:2091–2102. doi: 10.1056/NEJMoa1911440.
    1. Abida W, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 2020 doi: 10.1200/JCO.20.01035.
    1. National Comprehensive Cancer Network. Clinical Guidelines in Oncology (NCCN Guidelines®): Prostate Cancer (Version 2.2021). NCCN (2021).
    1. National Cancer Institute. Cancer Genetics Overview (PDQ®) — Health Professional Version. NIH (2022).
    1. National Comprehensive Cancer Network. National Comprehensive Cancer Network Clinical Guidelines in Oncology (NCCN Guidelines®): Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic (Version 1.2022). NCCN (2022).
    1. Riley BD, et al. Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors. J. Genet. Couns. 2012;21:151–161. doi: 10.1007/s10897-011-9462-x.
    1. Resta R, et al. A new definition of genetic counseling: national society of genetic counselors’ task force report. J. Genet. Couns. 2006;15:77–83. doi: 10.1007/s10897-005-9014-3.
    1. Uhlmann, W. R., Schuette, J. L., & Yashar, B. A Guide to Genetic Counseling 2nd edn (Wiley-Blackwell, 2009).
    1. Schneider, K. A. Counseling about Cancer: Strategies for Genetic Counseling 3rd edn (Wiley-Blackwell, 2009).
    1. Giri VN, Hyatt C, Gomella LG. Germline testing for men with PCA: navigating an expanding new world of genetic evaluation for precision therapy and precision management. J. Clin. Oncol. 2019;37:1455–1459. doi: 10.1200/JCO.18.02181.
    1. Hughes KS. Genetic testing: what problem are we trying to solve? J. Clin. Oncol. 2017;35:3789–3791. doi: 10.1200/JCO.2017.74.7899.
    1. Abacan M, et al. The global state of the genetic counseling profession. Eur. J. Hum. Genet. 2019;27:183–197. doi: 10.1038/s41431-018-0252-x.
    1. Thompson MA, et al. Coordinating an oncology precision medicine clinic within an integrated health system: lessons learned in year one. J. Patient Cent. Res. Rev. 2019;6:36–45. doi: 10.17294/2330-0698.1639.
    1. Sztupinszki Z, et al. Detection of molecular signatures of homologous recombination deficiency in prostate cancer with or without BRCA1/2 mutations. Clin. Cancer Res. 2020;26:2673–2680. doi: 10.1158/1078-0432.CCR-19-2135.
    1. National Human Genome Research Institute. Talking glossary of genetic terms. NIH (2022).
    1. Welcsh PL, King M-C. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum. Mol. Genet. 2001;10:705–713. doi: 10.1093/hmg/10.7.705.
    1. Pritchard CC, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 2016;375:443–453. doi: 10.1056/NEJMoa1603144.
    1. Nicolosi P, et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019;5:523–528. doi: 10.1001/jamaoncol.2018.6760.
    1. Giri VN, et al. Inherited mutations in males undergoing multigene panel testing for prostate cancer — emerging implications for personalized prostate cancer genetic evaluation. J. Clin. Oncol. Precis. Oncol. 2017;1:1–17.
    1. Giri VN, Beebe-Dimmer JL. Familial prostate cancer. Semin. Oncol. 2016;43:560–565. doi: 10.1053/j.seminoncol.2016.08.001.
    1. Castro E, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol. 2013;31:1748–1757. doi: 10.1200/JCO.2012.43.1882.
    1. Akbari MR, et al. The impact of a BRCA2 mutation on mortality from screen-detected prostate cancer. Br. J. Cancer. 2014;111:1238–1240. doi: 10.1038/bjc.2014.428.
    1. Castro E, et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol. 2015;68:186–193. doi: 10.1016/j.eururo.2014.10.022.
    1. King MC, et al. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;02:643–646. doi: 10.1126/science.1088759.
    1. Kirchhoff T, et al. BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin. Cancer Res. 2004;10:2918–2921. doi: 10.1158/1078-0432.CCR-03-0604.
    1. Abul-Husn NS, et al. Exome sequencing reveals a high prevalence of BRCA1 and BRCA2 founder variants in a diverse population-based biobank. Genome Med. 2020;12:2. doi: 10.1186/s13073-019-0691-1.
    1. Carter BS, et al. Hereditary prostate cancer: epidemiologic and clinical features. J. Urol. 1993;150:797–802. doi: 10.1016/S0022-5347(17)35617-3.
    1. Ewing CM, et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 2012;366:141–149. doi: 10.1056/NEJMoa1110000.
    1. Witte JS, et al. HOXB13 mutation and prostate cancer: studies of siblings and aggressive disease. Cancer Epidemiol. Biomark. Prev. 2013;22:675–680. doi: 10.1158/1055-9965.EPI-12-1154.
    1. Laitinen VH, et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol. Biomark. Prev. 2013;22:452–460. doi: 10.1158/1055-9965.EPI-12-1000-T.
    1. Brechka H, Bhanvadia RR, VanOpstall C, Vander Griend DJ. HOXB13 mutations and binding partners in prostate development and cancer: function, clinical significance, and future directions. Genes Dis. 2017;4:75–87. doi: 10.1016/j.gendis.2017.01.003.
    1. Raymond VM, et al. Elevated risk of prostate cancer among men with Lynch syndrome. J. Clin. Oncol. 2013;31:1713–1718. doi: 10.1200/JCO.2012.44.1238.
    1. Lynch H, et al. Milestones of Lynch syndrome: 1895–2015. Nat. Rev. Cancer. 2015;15:181–194. doi: 10.1038/nrc3878.
    1. Dominguez-Valentin M, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020;22:15–25. doi: 10.1038/s41436-019-0596-9.
    1. National Comprehensive Cancer Network. Clinical Guidelines in Oncology (NCCN Guidelines®): Lynch syndrome (Version 2.2021) (NCCN, 2021).
    1. Lowrance, W et al. Advanced prostate cancer: AUA/ASTRO/SUO guideline. AUA (2020).
    1. Mottet, N et al. EAU guidelines: prostate cancer. EAU (2020).
    1. Domchek SM, Bradbury A, Garber JE, Offit K, Robson ME. Multiplex genetic testing for cancer susceptibility: out on the high wire without a net? J. Clin. Oncol. 2013;31:1267–1270. doi: 10.1200/JCO.2012.46.9403.
    1. Lynce F, Isaacs C. How far do we go with genetic evaluation. Am. Soc. Clin. Oncol. Educ. Book. 2016;35:e72–e78. doi: 10.1200/EDBK_160391.
    1. Cancer Genetics Risk Assessment and Counseling. National Cancer Institute PDQ®. NIH (2022).
    1. Oh B. Direct-to-consumer genetic testing: advantages and pitfalls. Genomics Inform. 2019;17:e33. doi: 10.5808/GI.2019.17.3.e33.
    1. Horton R, et al. Direct-to-consumer genetic testing. BMJ. 2019;367:l5688. doi: 10.1136/bmj.l5688.
    1. Roberts JS, Ostergren J. Direct-to-consumer genetic testing and personal genomics services: a review of recent empirical studies. Curr. Genet. Med. Rep. 2013;1:182–200. doi: 10.1007/s40142-013-0018-2.
    1. Page EC, et al. Interim results from the IMPACT study: evidence for prostate-specific antigen screening in BRCA2 mutation carriers. Eur. Urol. 2019;76:831–842. doi: 10.1016/j.eururo.2019.08.019.
    1. National Comprehensive Cancer Network Clinical Guidelines in Oncology (NCCN Guidelines®): prostate cancer early detection (Version 2.2020) (NCCN, 2020).
    1. Bancroft EK, et al. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol. 2021;22:1618–1631. doi: 10.1016/S1470-2045(21)00522-2.
    1. Carter HB, et al. Germline mutations in ATM and BRCA1/2 are associated with grade reclassification in men on active surveillance for prostate cancer. Eur. Urol. 2019;75:743–749. doi: 10.1016/j.eururo.2018.09.021.
    1. Loeb S, Giri VN. Clinical implications of germline testing in newly diagnosed prostate cancer. Eur. Urol. Oncol. 2021;4:1–9. doi: 10.1016/j.euo.2020.11.011.
    1. Mateo J, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 2015;373:1697–1708. doi: 10.1056/NEJMoa1506859.
    1. Abida W, et al. Preliminary results from TRITON2: a phase 2 study of rucaparib in patients with mCRPC associated with homologous recombination repair gene alterations. Ann. Oncol. 2018;29(Suppl. 8):viii271–viii302.
    1. Smith MR, et al. Pre-specified interim analysis of GALAHAD: a phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD) Ann. Oncol. 2019;30(Suppl. 5):V884–V885. doi: 10.1093/annonc/mdz394.043.
    1. Virtanen V, et al. PARP inhibitors in prostate cancer — the preclinical rationale and current clinical development. Genes. 2019;10:565. doi: 10.3390/genes10080565.
    1. Le DT, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733.
    1. Graff JN, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7:52810–52817. doi: 10.18632/oncotarget.10547.
    1. Cheng HH. The resounding effect of DNA repair deficiency in prostate cancer. Urol. Oncol. 2018;36:385–388. doi: 10.1016/j.urolonc.2018.02.014.
    1. Antonarakis ES, et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 2020;38:395–405. doi: 10.1200/JCO.19.01638.
    1. Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 2013;5:a012716. doi: 10.1101/cshperspect.a012716.
    1. Mateo J, et al. A decade of clinical development of PARP inhibitors in perspective. Ann. Oncol. 2019;30:437–1447. doi: 10.1093/annonc/mdz192.
    1. Boyiadzis MM, et al. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J. Immunother. Cancer. 2018;6:35. doi: 10.1186/s40425-018-0342-x.
    1. Hussain M, et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2020;383:2345–2357. doi: 10.1056/NEJMoa2022485.
    1. Caswell-Jin JL, et al. Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk. Genet. Med. 2018;20:234–239. doi: 10.1038/gim.2017.96.
    1. U.S. Government Publishing Office Genetic Information Nondiscrimination Act of 2008 Public Law 110–233, 122 Stat. 881 (2008).
    1. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30.
    1. Mersch J, et al. Prevalence of variant reclassification following hereditary cancer genetic testing. JAMA. 2018;320:1266–1274. doi: 10.1001/jama.2018.13152.
    1. Gallo AM, Angst DB, Knafl KA. Disclosure of genetic information within families. Am. J. Nurs. 2009;109:65–69. doi: 10.1097/01.NAJ.0000348607.31983.6e.
    1. Daly MB. A family-centered model for sharing genetic risk. J. Law Med. Ethics. 2015;43:545–551. doi: 10.1111/jlme.12297.
    1. Perry TJ, et al. The duty to warn at-risk relatives — the experience of genetic counselors and medical geneticists. Am. J. Med. Genet. 2019;182:314–321. doi: 10.1002/ajmg.a.61425.
    1. Russo J, et al. Pretest genetic education video vs. genetic counseling for men considering prostate cancer germline testing: a patient-choice study to address urgent practice needs. J. Clin. Oncol. Precis. Oncol. 2021;5:PO.21.00238.
    1. Centers for Disease Control and Prevention. My Family Health Portrait: a tool from Surgeon General. CDC (2022).
    1. Mark JR, McDougall C, Giri VN. Genetic testing guidelines and education of health care providers involved in prostate cancer care. Urol. Clin. North. Am. 2021;48:311–322. doi: 10.1016/j.ucl.2021.03.003.
    1. Stoll K, Kubendran S, Cohen SA. The past, present and future of service delivery in genetic counseling: keeping up in the era of precision medicine. Am. J. Med. Genet. 2018;178C:24–37. doi: 10.1002/ajmg.c.31602.
    1. Buchanan AH, et al. Randomized trial of telegenetics vs. in-person cancer genetic counseling: cost, patient satisfaction and attendance. J. Genet. Couns. 2015;24:961–970. doi: 10.1007/s10897-015-9836-6.
    1. Schwartz MD, et al. Randomized noninferiority trial of telephone versus in-person genetic counseling for hereditary breast and ovarian cancer. J. Clin. Oncol. 2014;32:618–626. doi: 10.1200/JCO.2013.51.3226.
    1. Kinney AY, et al. Randomized noninferiority trial of telephone delivery of BRCA1/2 genetic counseling compared with in-person counseling: 1-year follow-up. J. Clin. Oncol. 2016;34:2914–2924. doi: 10.1200/JCO.2015.65.9557.
    1. Gadzinski AJ, Ellimoottil C. Telehealth in urology after the COVID-19 pandemic. Nat. Rev. Urol. 2020;17:363–364. doi: 10.1038/s41585-020-0336-6.
    1. Mauer C, et al. Adapting genetic counseling operations amidst the COVID-19 pandemic. J. Genet. Couns. 2021;30:949–955. doi: 10.1002/jgc4.1474.
    1. Schmidlen T, Schwartz M, DiLoreto K, Kirchner HL, Sturm AC. Patient assessment of chatbots for the scalable delivery of genetic counseling. J. Genet. Couns. 2019;28:1166–1177. doi: 10.1002/jgc4.1169.
    1. Giri VN, et al. Understanding of multigene test results among males undergoing germline testing for inherited prostate cancer: implications for genetic counseling. Prostate. 2018;78:879–888. doi: 10.1002/pros.23535.
    1. Giri VN, et al. Germline genetic testing for inherited prostate cancer in practice: implications for genetic testing, precision therapy, and cascade testing. Prostate. 2019;79:333–339. doi: 10.1002/pros.23739.
    1. Zeliadt SB, et al. Why do men choose one treatment over another?: a review of patient decision making for localized prostate cancer. Cancer. 2006;106:1865–1874. doi: 10.1002/cncr.21822.
    1. Taylor LG, Canfield SE, Du XL. Review of major adverse effects of androgen-deprivation therapy in men with prostate cancer. Cancer. 2009;115:2388–2399. doi: 10.1002/cncr.24283.
    1. Sharpley CF, Birsika V, Denham JW. Factors associated with feelings of loss of masculinity in men with prostate cancer in the RADAR trial. Psychooncology. 2014;23:524–530. doi: 10.1002/pon.3448.
    1. Bester J, Cole C, Kodish E. The limits of informed consent for an overwhelmed patient: clinicians’ role in protecting patients and preventing overwhelm. AMA J. Ethics. 2016;18:869–886. doi: 10.1001/journalofethics.2016.18.9.peer2-1609.
    1. Karam R, et al. Assessment of diagnostic outcomes of RNA genetic testing for hereditary cancer. JAMA Netw. Open. 2019;2:e1913900. doi: 10.1001/jamanetworkopen.2019.13900.
    1. Sanda, M. G. et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline (2017). AUA (2017).

Source: PubMed

3
Abonner