Diet and Immune Function

Caroline E Childs, Philip C Calder, Elizabeth A Miles, Caroline E Childs, Philip C Calder, Elizabeth A Miles

Abstract

A well-functioning immune system is critical for survival. The immune system must be constantly alert, monitoring for signs of invasion or danger. Cells of the immune system must be able to distinguish self from non-self and furthermore discriminate between non-self molecules which are harmful (e.g., those from pathogens) and innocuous non-self molecules (e.g., from food). This Special Issue of Nutrients explores the relationship between diet and nutrients and immune function. In this preface, we outline the key functions of the immune system, and how it interacts with nutrients across the life course, highlighting the work included within this Special Issue. This includes the role of macronutrients, micronutrients, and the gut microbiome in mediating immunological effects. Nutritional modulation of the immune system has applications within the clinical setting, but can also have a role in healthy populations, acting to reduce or delay the onset of immune-mediated chronic diseases. Ongoing research in this field will ultimately lead to a better understanding of the role of diet and nutrients in immune function and will facilitate the use of bespoke nutrition to improve human health.

Keywords: immunity; inflammation; life course; macronutrients; microbiome; micronutrients; nutrition; prebiotic; probiotic.

Conflict of interest statement

CEC is member of the ILSI Europe Expert Group on Determinants of Immune Competence and Co-Chair of ILSI Europe’s Nutrition, Immunity and Inflammation Task Force. CEC receives research funding from HOST Therabiomics and honoraria to speak at an event organised by Yakult. PCC has research funding from Bayer, has received research study products from Christian Hansen, and acts as a consultant/adviser to BASF, DSM, Cargill, Smartfish and Pfizer. EAM has no conflicts of interest to declare.

References

    1. Romagnani S. T-cell subsets (Th1 versus Th2) Ann. Allergy Asthma Immunol. 2000;85:9–18. doi: 10.1016/S1081-1206(10)62426-X.
    1. Zhu J., Yamane H., Paul W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 2010;28:445–489. doi: 10.1146/annurev-immunol-030409-101212.
    1. Schroeder H.W., Jr., Cavacini L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010;125:41–52. doi: 10.1016/j.jaci.2009.09.046.
    1. Berin M.C. Mucosal antibodies in the regulation of tolerance and allergy to foods. Semin. Immunopathol. 2012;34:633–642. doi: 10.1007/s00281-012-0325-9.
    1. Vazquez M.I., Catalan-Dibene J., Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. 2015;74:318–326. doi: 10.1016/j.cyto.2015.02.007.
    1. Saraiva M., O’Garra A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010;10:170–181. doi: 10.1038/nri2711.
    1. Calder P.C., Ahluwalia N., Brouns F., Buetler T., Clement K., Cunningham K., Esposito K., Jonsson L.S., Kolb H., Lansink M., et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011;106:5–78. doi: 10.1017/S0007114511005460.
    1. Calder P.C., Bosco N., Bourdet-Sicard R., Capuron L., Delzenne N., Dore J., Franceschi C., Lehtinen M.J., Recker T., Salvioli S., et al. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res. Rev. 2017;40:95–119. doi: 10.1016/j.arr.2017.09.001.
    1. Calder P.C., Jackson A.A. Undernutrition, infection and immune function. Nutr. Res. Rev. 2000;13:3–29. doi: 10.1079/095442200108728981.
    1. Lee G.Y., Han S.N. The Role of Vitamin E in Immunity. Nutrients. 2018;10:1614. doi: 10.3390/nu10111614.
    1. Macdonald T.T., Monteleone G. Immunity, inflammation, and allergy in the gut. Science. 2005;307:1920–1925. doi: 10.1126/science.1106442.
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491–502. doi: 10.1038/nrgastro.2017.75.
    1. Hansen N.W., Sams A. The Microbiotic Highway to Health-New Perspective on Food Structure, Gut Microbiota, and Host Inflammation. Nutrients. 2018;10:1590. doi: 10.3390/nu10111590.
    1. Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J.D., Serino M., Tilg H., Watson A., Wells J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7.
    1. Sassi F., Tamone C., D’Amelio P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients. 2018;10:1656. doi: 10.3390/nu10111656.
    1. Kiewiet M.B.G., Faas M.M., de Vos P. Immunomodulatory Protein Hydrolysates and Their Application. Nutrients. 2018;10:904. doi: 10.3390/nu10070904.
    1. Santiago-Lopez L., Hernandez-Mendoza A., Mata-Haro V., Vallejo-Cordoba B., Wall-Medrano A., Astiazaran-Garcia H., Estrada-Montoya M.D.C., Gonzalez-Cordova A.F. Effect of Milk Fermented with Lactobacillus fermentum on the Inflammatory Response in Mice. Nutrients. 2018;10:1039. doi: 10.3390/nu10081039.
    1. McKeen S., Young W., Mullaney J., Fraser K., McNabb W.C., Roy N.C. Infant Complementary Feeding of Prebiotics for theMicrobiome and Immunity. Nutrients. 2019;11:364. doi: 10.3390/nu11020364.
    1. Kamemura N., Tada H., Shimojo N., Morita Y., Kohno Y., Ichioka T., Suzuki K., Kubota K., Hiyoshi M., Kido H. Intrauterine sensitization of allergen-specific IgE analyzed by a highly sensitive new allergen microarray. J. Allergy Clin. Immunol. 2012;130:113–121. doi: 10.1016/j.jaci.2012.02.023.
    1. Donovan S.M., Comstock S.S. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann. Nutr. Metab. 2016;69:42–51. doi: 10.1159/000452818.
    1. Plaza-Diaz J., Fontana L., Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients. 2018;10:1038. doi: 10.3390/nu10081038.
    1. Torres-Castro P., Abril-Gil M., Rodriguez-Lagunas M.J., Castell M., Perez-Cano F.J., Franch A. TGF-beta2, EGF, and FGF21 Growth Factors Present in Breast Milk Promote Mesenteric Lymph Node Lymphocytes Maturation in Suckling Rats. Nutrients. 2018;10:1171. doi: 10.3390/nu10091171.
    1. Kim H., Sitarik A.R., Woodcroft K., Johnson C.C., Zoratti E. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr. Allergy Asthma Rep. 2019;19:22. doi: 10.1007/s11882-019-0851-9.
    1. Kuper C.F., van Bilsen J., Cnossen H., Houben G., Garthoff J., Wolterbeek A. Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies. Reprod. Toxicol. 2016;64:180–190. doi: 10.1016/j.reprotox.2016.06.002.
    1. Crooke S.N., Ovsyannikova I.G., Poland G.A., Kennedy R.B. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp. Gerontol. 2019;124:110632. doi: 10.1016/j.exger.2019.110632.
    1. Berzins S.P., Uldrich A.P., Sutherland J.S., Gill J., Miller J.F., Godfrey D.I., Boyd R.L. Thymic regeneration: Teaching an old immune system new tricks. Trends Mol. Med. 2002;8:469–476. doi: 10.1016/S1471-4914(02)02415-2.
    1. Salanitro A.H., Ritchie C.S., Hovater M., Roth D.L., Sawyer P., Locher J.L., Bodner E., Brown C.J., Allman R.M. Inflammatory biomarkers as predictors of hospitalization and death in community-dwelling older adults. Arch. Gerontol. Geriatr. 2012;54:387–391. doi: 10.1016/j.archger.2012.01.006.
    1. Maggini S., Pierre A., Calder P.C. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10:1531. doi: 10.3390/nu10101531.
    1. Miles E.A., Rees D., Banerjee T., Cazzola R., Lewis S., Wood R., Oates R., Tallant A., Cestaro B., Yaqoob P., et al. Age-related increases in circulating inflammatory markers in men are independent of BMI, blood pressure and blood lipid concentrations. Atherosclerosis. 2008;196:298–305. doi: 10.1016/j.atherosclerosis.2006.11.002.
    1. Hotamisligil G.S. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542:177–185. doi: 10.1038/nature21363.
    1. Christ A., Latz E. The Western lifestyle has lasting effects on metaflammation. Nat. Rev. Immunol. 2019;19:267–268. doi: 10.1038/s41577-019-0156-1.
    1. Rogero M.M., Calder P.C. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. 2018;10:432. doi: 10.3390/nu10040432.
    1. Dalton B., Campbell I.C., Chung R., Breen G., Schmidt U., Himmerich H. Inflammatory Markers in Anorexia Nervosa: An Exploratory Study. Nutrients. 2018;10:1573. doi: 10.3390/nu10111573.
    1. Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008;9:46–56. doi: 10.1038/nrn2297.
    1. Dinu M., Pagliai G., Casini A., Sofi F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018;72:30–43. doi: 10.1038/ejcn.2017.58.
    1. Rahman I., Biswas S.K., Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006;72:1439–1452. doi: 10.1016/j.bcp.2006.07.004.
    1. Yahfoufi N., Alsadi N., Jambi M., Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10:1618. doi: 10.3390/nu10111618.
    1. World Health Organization Sepsis. [(accessed on 26 July 2019)]; Available online: .
    1. Alker W., Haase H. Zinc and Sepsis. Nutrients. 2018;10:976. doi: 10.3390/nu10080976.
    1. Andreini C., Banci L., Bertini I., Rosato A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 2006;5:196–201. doi: 10.1021/pr050361j.
    1. Ibs K.H., Rink L. Zinc-altered immune function. J. Nutr. 2003;133:1452–1456. doi: 10.1093/jn/133.5.1452S.
    1. Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9.
    1. Avery J.C., Hoffmann P.R. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10:1203. doi: 10.3390/nu10091203.
    1. Cruzat V., Macedo Rogero M., Noel Keane K., Curi R., Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018;10:1654. doi: 10.3390/nu10111564.
    1. Haussler M.R., Whitfield G.K., Haussler C.A., Hsieh J.C., Thompson P.D., Selznick S.H., Dominguez C.E., Jurutka P.W. The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1998;13:325–349. doi: 10.1359/jbmr.1998.13.3.325.
    1. Baeke F., Takiishi T., Korf H., Gysemans C., Mathieu C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 2010;10:482–496. doi: 10.1016/j.coph.2010.04.001.
    1. Wang T.T., Nestel F.P., Bourdeau V., Nagai Y., Wang Q., Liao J., Tavera-Mendoza L., Lin R., Hanrahan J.W., Mader S., et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004;173:2909–2912. doi: 10.4049/jimmunol.173.5.2909.

Source: PubMed

3
Abonner