Clinical utility and cost modelling of the phi test to triage referrals into image-based diagnostic services for suspected prostate cancer: the PRIM (Phi to RefIne Mri) study

Lois Kim, Nicholas Boxall, Anne George, Keith Burling, Pete Acher, Jonathan Aning, Stuart McCracken, Toby Page, Vincent J Gnanapragasam, Lois Kim, Nicholas Boxall, Anne George, Keith Burling, Pete Acher, Jonathan Aning, Stuart McCracken, Toby Page, Vincent J Gnanapragasam

Abstract

Background: The clinical pathway to detect and diagnose prostate cancer has been revolutionised by the use of multiparametric MRI (mpMRI pre-biopsy). mpMRI however remains a resource-intensive test and is highly operator dependent with variable effectiveness with regard to its negative predictive value. Here we tested the use of the phi assay in standard clinical practice to pre-select men at the highest risk of harbouring significant cancer and hence refine the use of mpMRI and biopsies.

Methods: A prospective five-centre study recruited men being investigated through an mpMRI-based prostate cancer diagnostic pathway. Test statistics for PSA, PSA density (PSAd) and phi were assessed for detecting significant cancers using 2 definitions: ≥ Grade Group (GG2) and ≥ Cambridge Prognostic Groups (CPG) 3. Cost modelling and decision curve analysis (DCA) was simultaneously performed.

Results: A total of 545 men were recruited and studied with a median age, PSA and phi of 66 years, 8.0 ng/ml and 44 respectively. Overall, ≥ GG2 and ≥ CPG3 cancer detection rates were 64% (349/545), 47% (256/545) and 32% (174/545) respectively. There was no difference across centres for patient demographics or cancer detection rates. The overall area under the curve (AUC) for predicting ≥ GG2 cancers was 0.70 for PSA and 0.82 for phi. AUCs for ≥ CPG3 cancers were 0.81 and 0.87 for PSA and phi respectively. AUC values for phi did not differ between centres suggesting reliability of the test in different diagnostic settings. Pre-referral phi cut-offs between 20 and 30 had NPVs of 0.85-0.90 for ≥ GG2 cancers and 0.94-1.0 for ≥ CPG3 cancers. A strategy of mpMRI in all and biopsy only positive lesions reduced unnecessary biopsies by 35% but missed 9% of ≥ GG2 and 5% of ≥ CPG3 cancers. Using PH ≥ 30 to rule out referrals missed 8% and 5% of ≥ GG2 and ≥ CPG3 cancers (and reduced unnecessary biopsies by 40%). This was achieved however with 25% fewer mpMRI. Pathways incorporating PSAd missed fewer cancers but necessitated more unnecessary biopsies. The phi strategy had the lowest mean costs with DCA demonstrating net clinical benefit over a range of thresholds.

Conclusion: phi as a triaging test may be an effective way to reduce mpMRI and biopsies without compromising detection of significant prostate cancers.

Keywords: Biopsy; Cambridge prognostic groups; Prostate cancer; Prostate health index (phi); mpMRI.

Conflict of interest statement

VJG has previously received a speaker honorarium from Beckman Coulter on biomarkers in prostate cancer prior to the conception of this study. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
ROC curve illustrating performance of phi, PSA, PSAD and mpMRI in predicting cancer diagnosis of ≥ Grade Group 2 (GG2) in the a whole cohort and b mpMRI-negative men (PI-RADS ≤ 3)
Fig. 2
Fig. 2
Decision curve analysis comparing the number of net benefits for detection of significant cancers for a range of risk threshold values and using different approaches (MRI-PSAd using a PSAd threshold of ≥ 0.15). MRI - magnetic resonance imaging, PSAd - PSA density, phi - Prostate Health Index

References

    1. Davies C, Castle JT, Stalbow K, Haslam PJ. Prostate mpMRI in the UK: the state of the nation. Clin Radiol. 2019;74(11):894.e11–894.e18. doi: 10.1016/j.crad.2019.09.129.
    1. Brizmohun Appayya M, Adshead J, Ahmed HU, Allen C, Bainbridge A, Barrett T, Giganti F, Graham J, Haslam P, Johnston EW, Kastner C, Kirkham APS, Lipton A, McNeill A, Moniz L, Moore CM, Nabi G, Padhani AR, Parker C, Patel A, Pursey J, Richenberg J, Staffurth J, van der Meulen J, Walls D, Punwani S. National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection - recommendations from a UK consensus meeting. BJU Int. 2018;122(1):13–25. doi: 10.1111/bju.14361.
    1. Rouviere O, Moldovan PC. The current role of prostate multiparametric magnetic resonance imaging. Asian J Urol. 2019;6(2):137–145. doi: 10.1016/j.ajur.2018.12.001.
    1. . Accessed 11 11 2019.
    1. Dasgupta P, Davis J, Hughes S. NICE guidelines on prostate cancer 2019. BJU Int. 2019;124(1):1. doi: 10.1111/bju.14815.
    1. Smith-Palmer J, Takizawa C, Valentine W. Literature review of the burden of prostate cancer in Germany, France, the United Kingdom and Canada. BMC Urol. 2019;19(1):19. doi: 10.1186/s12894-019-0448-6.
    1. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63–89. doi: 10.14740/wjon1191.
    1. Rider JR, Sandin F, Andrén O, Wiklund P, Hugosson J, Stattin P. Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study. Eur Urol. 2013;63(1):88–96. doi: 10.1016/j.eururo.2012.08.001.
    1. Kohestani K, Wallström J, Dehlfors N, Sponga OM, Månsson M, Josefsson A, Carlsson S, Hellström M, Hugosson J. Performance and inter-observer variability of prostate MRI (PI-RADS version 2) outside high-volume centres. Scand J Urol. 2019;29:1–8.
    1. Pickersgill NA, Vetter JM, Andriole GL, Shetty AS, Fowler KJ, Mintz AJ, Siegel CL, Kim EH. Accuracy and variability of prostate multiparametric magnetic resonance imaging interpretation using the prostate imaging reporting and data system: a blinded comparison of radiologists. Eur Urol Focus. 2020;6(2):267–272. doi: 10.1016/j.euf.2018.10.008.
    1. Moldovan PC, Van den Broeck T, Sylvester R, Marconi L, Bellmunt J, van denBergh RCN, Bolla M, Briers E, Cumberbatch MG, Fossati N, Gross T, Henry AM, Joniau S, van der Kwast TH, Matveev VB, van der Poel HG, De Santis M, Schoots IG, Wiegel T, Yuan CY, Cornford P, Mottet N, Lam TB, Rouvière O. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur Urol. 2017;72(2):250–266. doi: 10.1016/j.eururo.2017.02.026.
    1. Busetto GM, De Berardinis E, Sciarra A, Panebianco V, Giovannone R, Rosato S, D'Errigo P, Di Silverio F, Gentile V, Salciccia S. Prostate cancer gene 3 and multiparametric magnetic resonance can reduce unnecessary biopsies: decision curve analysis to evaluate predictive models. Urology. 2013;82(6):1355–1360. doi: 10.1016/j.urology.2013.06.078.
    1. Marzouk K, Ehdaie B, Vertosick E, Zappala S, Vickers A. Developing an effective strategy to improve the detection of significant prostate cancer by combining the 4Kscore and multiparametric MRI. Urol Oncol. 2019;37(10):672–677. doi: 10.1016/j.urolonc.2019.07.010.
    1. Grönberg H, Eklund M, Picker W, Aly M, Jäderling F, Adolfsson J, Landquist M, Haug ES, Ström P, Carlsson S, Nordström T. Prostate cancer diagnostics using a combination of the Stockholm3 blood test and multiparametric magnetic resonance imaging. Eur Urol. 2018;74(6):722–728. doi: 10.1016/j.eururo.2018.06.022.
    1. Hendriks RJ, van der Leest MMG, Dijkstra S, Barentsz JO, Van Criekinge W, Hulsbergen-van de Kaa CA, Schalken JA, Mulders PFA, van Oort IM. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection. Prostate. 2017;77(14):1401–1407. doi: 10.1002/pros.23401.
    1. Schoots IG, Padhani AR. Personalizing prostate cancer diagnosis with multivariate risk prediction tools: how should prostate MRI be incorporated? World J Urol. 2019. 10.1007/s00345-019-02899-0.
    1. Kohaar I, Petrovics G, Srivastava S. A rich array of prostate cancer molecular biomarkers: opportunities and challenges. Int J Mol Sci. 2019;20(8):1813. doi: 10.3390/ijms20081813.
    1. Lamy PJ, Allory Y, Gauchez AS, Asselain B, Beuzeboc P, de Cremoux P, Fontugne J, Georges A, Hennequin C, Lehmann-Che J, Massard C, Millet I, Murez T, Schlageter MH, Rouvière O, Kassab-Chahmi D, Rozet F, Descotes JL, Rébillard X. Prognostic biomarkers used for localised prostate cancer management: a systematic review. Eur Urol Focus. 2018;4(6):790–803. doi: 10.1016/j.euf.2017.02.017.
    1. Mathieu R, Castelli C, Fardoun T, Peyronnet B, Shariat SF, Bensalah K, Vincendeau S. Cost analysis of prostate cancer detection including the prostate health index (phi) World J Urol. 2019;37(3):481–487. doi: 10.1007/s00345-018-2362-z.
    1. Wang W, Wang M, Wang L, Adams TS, Tian Y, Xu J. Diagnostic ability of %p2PSA and prostate health index for aggressive prostate cancer: a meta-analysis. Sci Rep. 2014;4:5012. doi: 10.1038/srep05012.
    1. Gnanapragasam VJ, Burling K, George A, Stearn S, Warren A, Barrett T, Koo B, Gallagher FA, Doble A, Kastner C, Parker RA. The prostate health index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population. Sci Rep. 2016;6:35364. doi: 10.1038/srep35364.
    1. Gnanapragasam VJ, Bratt O, Muir K, Lee LS, Huang HH, Stattin P, Lophatananon A. The Cambridge Prognostic Groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: a validation study. BMC Med. 2018;16(1):31. doi: 10.1186/s12916-018-1019-5.
    1. Zelic R, Garmo H, Zugna D, Stattin P, Richiardi L, Akre O, Pettersson A. Predicting prostate cancer death with different pretreatment risk stratification tools: a head-to-head comparison in a nationwide cohort study. Eur Urol. 2019.
    1. . Accessed 12 11 19.
    1. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–574. doi: 10.1177/0272989X06295361.
    1. Batura D, Gopal RG. The national burden of infections after prostate biopsy in England and Wales: a wake-up call for better prevention--authors' response. J Antimicrob Chemother. 2013;68(10):2419–2420.
    1. Hex N, Retzler J, Bartlett C, Arber M. The cost of sepsis care in the UK: York Health Economics Consortium; 2017. . Last accessed 13 Dec 2018.
    1. Porpiglia F, Russo F, Manfredi M, Mele F, Fiori C, Bollito E, Papotti M, Molineris I, Passera R, Regge D. The roles of multiparametric magnetic resonance imaging, PCA3 and prostate health index-which is the best predictor of prostate cancer after a negative biopsy? J Urol. 2014;192(1):60–66. doi: 10.1016/j.juro.2014.01.030.
    1. Sciarra A, Panebianco V, Cattarino S, Busetto GM, De Berardinis E, Ciccariello M, Gentile V, Salciccia S. Multiparametric magnetic resonance imaging of the prostate can improve the predictive value of the urinary prostate cancer antigen 3 test in patients with elevated prostate-specific antigen levels and a previous negative biopsy. BJU Int. 2012;110(11):1661–1665. doi: 10.1111/j.1464-410X.2012.11146.x.
    1. Osses DF, Roobol MJ, Schoots IG. Prediction medicine: biomarkers, risk calculators and magnetic resonance imaging as risk stratification tools in prostate cancer diagnosis. Int J Mol Sci. 2019;20(7):E1637. doi: 10.3390/ijms20071637.
    1. Ling DI, Lynd LD, Harrison M, Anis AH, Bansback N. Early cost-effectiveness modeling for better decisions in public research investment of personalized medicine technologies. J Comp Eff Res. 2019;8(1):7–19. doi: 10.2217/cer-2018-0033.
    1. Verbeek JFM, Bangma CH, Kweldam CF, van der Kwast TH, Kümmerlin IP, van Leenders GJLH, Roobol MJ. Reducing unnecessary biopsies while detecting clinically significant prostate cancer including cribriform growth with the ERSPC Rotterdam risk calculator and 4Kscore. Urol Oncol. 2019;37(2):138–144. doi: 10.1016/j.urolonc.2018.11.021.
    1. Loeb S, Shin SS, Broyles DL, Wei JT, Sanda M, Klee G, Partin AW, Sokoll L, Chan DW, Bangma CH, van Schaik RHN, Slawin KM, Marks LS, Catalona WJ. Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer. BJU Int. 2017;120(1):61–68. doi: 10.1111/bju.13676.
    1. Mannaerts CK, Gayet M, Verbeek JF, Engelbrecht MRW, Savci-Heijink CD, Jager GJ, Gielens MPM, van der Linden H, Beerlage HP, de Reijke TM, Wijkstra H, Roobol MJ. Prostate cancer risk assessment in biopsy-naïve patients: the Rotterdam prostate cancer risk calculator in multiparametric magnetic resonance imaging-transrectal ultrasound (TRUS) fusion biopsy and systematic TRUS biopsy. Eur Urol Oncol. 2018;1(2):109–117. doi: 10.1016/j.euo.2018.02.010.
    1. Alberts AR, Roobol MJ, Verbeek JFM, Schoots IG, Chiu PK, Osses DF, Tijsterman JD, Beerlage HP, Mannaerts CK, Schimmöller L, Albers P, Arsov C. Prediction of high-grade prostate cancer following multiparametric magnetic resonance imaging: improving the Rotterdam European randomized study of screening for prostate cancer risk calculators. Eur Urol. 2019;75(2):310–318. doi: 10.1016/j.eururo.2018.07.031.
    1. Kang Z, Min X, Weinreb J, Li Q, Feng Z, Wang L. Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol. 2019;212(2):357–365. doi: 10.2214/AJR.18.20103.
    1. Walz J. Let’s keep it at one step at a time: why biparametric magnetic resonance imaging is not the priority today. Eur Urol. 2019;76(5):582–583. doi: 10.1016/j.eururo.2019.06.028.
    1. Heijnsdijk EA, Denham D, de Koning HJ. The cost-effectiveness of prostate cancer detection with the use of prostate health index. Value Health. 2016;19(2):153–157. doi: 10.1016/j.jval.2015.12.002.
    1. Nichol MB, Wu J, Huang J, Denham D, Frencher SK, Jacobsen SJ. Cost-effectiveness of prostate health index for prostate cancer detection. BJU Int. 2012;110(3):353–362. doi: 10.1111/j.1464-410X.2011.10751.x.
    1. Sathianathen NJ, Kuntz KM, Alarid-Escudero F, Lawrentschuk NL, Bolton DM, Murphy DG, Weight CJ, Konety BR. Incorporating biomarkers into the primary prostate biopsy setting: a cost-effectiveness analysis. J Urol. 2018;200(6):1215–1220. doi: 10.1016/j.juro.2018.06.016.
    1. Rouvière O, Puech P, Renard-Penna R, Claudon M, Roy C, Mège-Lechevallier F, Decaussin-Petrucci M, Dubreuil-Chambardel M, Magaud L, Remontet L, Ruffion A, Colombel M, Crouzet S, Schott AM, Lemaitre L, Rabilloud M, Grenier N, MRI-FIRST Investigators Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 2019;20(1):100–109. doi: 10.1016/S1470-2045(18)30569-2.
    1. van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, Zamecnik P, Bakker D, Setiasti AY, Veltman J, van den Hout H, van der Lelij H, van Oort I, Klaver S, Debruyne F, Sedelaar M, Hannink G, Rovers M, Hulsbergen-van de Kaa C, Barentsz JO. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur Urol. 2019;75(4):570–578. doi: 10.1016/j.eururo.2018.11.023.
    1. Monda SM, Vetter JM, Andriole GL, Fowler KJ, Shetty AS, Weese JR, Kim EH. Cognitive versus software fusion for MRI-targeted biopsy: experience before and after implementation of fusion. Urology. 2018;119:115–120. doi: 10.1016/j.urology.2018.06.011.

Source: PubMed

3
Abonner