The effect of transcranial direct current stimulation (tDCS) on locomotion and balance in patients with chronic stroke: study protocol for a randomised controlled trial

M Geiger, A Supiot, R Zory, P Aegerter, D Pradon, N Roche, M Geiger, A Supiot, R Zory, P Aegerter, D Pradon, N Roche

Abstract

Background: Following stroke, patients are often left with hemiparesis that reduces balance and gait capacity. A recent, non-invasive technique, transcranial direct current stimulation, can be used to modify cortical excitability when used in an anodal configuration. It also increases the excitability of spinal neuronal circuits involved in movement in healthy subjects. Many studies in patients with stroke have shown that this technique can improve motor, sensory and cognitive function. For example, anodal tDCS has been shown to improve motor performance of the lower limbs in patients with stroke, such as voluntary quadriceps strength, toe-pinch force and reaction time. Nevertheless, studies of motor function have been limited to simple tasks. Surprisingly, the effects of tDCS on the locomotion and balance of patients with chronic stroke have never been evaluated. In this study, we hypothesise that anodal tDCS will improve balance and gait parameters in patients with chronic stroke-related hemiparesis through its effects at cortical and spinal level.

Methods/design: This is a prospective, randomised, placebo-controlled, double-blinded, single-centre, cross-over study over 36 months. Forty patients with chronic stroke will be included. Each patient will participate in three visits: an inclusion visit, and two visits during which they will all undergo either one 30-min session of transcranial direct current stimulation or one 30-min session of placebo stimulation in a randomised order. Evaluations will be carried out before, during and twice after stimulation. The primary outcome is the variability of the displacement of the centre of mass during gait and a static-balance task. Secondary outcomes include clinical and functional measures before and after stimulation. A three-dimensional gait analysis, and evaluation of static balance on a force platform will be also conducted before, during and after stimulation.

Discussion: These results should constitute a useful database to determine the aspects of complex motor function that are the most improved by transcranial direct current stimulation in patients with hemiparesis. It is the first essential step towards validating this technique as a treatment, coupled with task-oriented training.

Trial registration: ClinicalTrials.gov, ID: NCT02134158 . First received on 18 December 2013; last updated on 14 September 2016. Other study ID numbers: P120135 / AOM12126, 2013-A00952-43.

Keywords: Balance; Gait; Motion analysis; Stroke; Transcranial direct current stimulation.

Conflict of interest statement

Ethics approval and consent to participate

All the participants will provide written informed consent. This study will be performed in accordance with the ethical codes of the World Medical Association and has been approved by the Local Ethics Committee: Comité de protection des personnes Ile de France IV (reference number: P120135 / AOM12126, 2013-A00952-43/ ClinicalTrials.gov: NCT02134158).

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The study schedule. Study timeline from the inclusion visit (V1) to the end of the study (V2 and V3). Patients will undergo clinical evaluations (CLI), gait analysis (GA) and an instrumented balance evaluation (BAL)

References

    1. Bohannon RW. Gait performance of hemiparetic stroke patients: selected variables. Arch Phys Med Rehabil. 1987;68:777–81.
    1. Duncan PWBM. Therapeutic strategies for rehabilitation of motor deficits. Stroke rehabilitation: the recovery of motor function. Chicago: Year Book Medical Publishers Inc; 1987. pp. 161–97.
    1. Nichols DS. Balance retraining after stroke using force platform biofeedback. Phys Ther. 1997;77(5):553–8. doi: 10.1093/ptj/77.5.553.
    1. Roerdink M, de Haart M, Daffertshofer A, Donker SF, Geurts ACH, Beek PJ. Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Exp Brain Res. 2006;174:256–69. doi:10.1007/s00221-006-0441-7.
    1. Geurts ACH, de Haart M, van Nes IJW, Duysens J, Herman B, Leyten AC, et al. A review of standing balance recovery from stroke. Gait Posture. 2005;22:267–81. doi:10.1016/j.gaitpost.2004.10.002.
    1. Paillex R, So A, Di Fabio RP, Badke MB, Pérennou D, Pélissier J, et al. Changes in the standing posture of stroke patients during rehabilitation. Gait Posture. 2005;21:403–9. doi:10.1016/j.gaitpost.2004.04.011.
    1. Corriveau H, Hébert R, Raîche M, Prince F, Mayo N, Bonita R, et al. Evaluation of postural stability in the elderly with stroke. Arch Phys Med Rehabil. 2004;85:1095–101. doi:10.1016/j.apmr.2003.09.023.
    1. Eng JJ, Chu KS. Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke. Arch Phys Med Rehabil. 2002;83:1138–44. doi: 10.1053/apmr.2002.33644.
    1. Nardone A, Godi M, Grasso M, Guglielmetti S, Schieppati M, Winter DA, et al. Stabilometry is a predictor of gait performance in chronic hemiparetic stroke patients. Gait Posture. 2009;30:5–10. doi:10.1016/j.gaitpost.2009.02.006.
    1. Goldie PA, Matyas TA, Evans OM, Dombovy M, Duncan P, Friedman P, et al. Deficit and change in gait velocity during rehabilitation after stroke. Arch Phys Med Rehabil. 1996;77:1074–82. doi:10.1016/S0003-9993(96)90072-6.
    1. Olney SJ, Griffin MP, McBride ID. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Phys Ther. 1994;74:872–85. Available from: .
    1. Kerrigan DC, Gronley J, Perry J. Stiff-legged gait in spastic paresis. A study of quadriceps and hamstrings muscle activity. Am J Phys Med Rehabil. 1991;70:294–300. doi: 10.1097/00002060-199112000-00003.
    1. Hesse S, Krajnik J, Luecke D, Jahnke MT, Gregoric M, Mauritz KH. Ankle muscle activity before and after botulinum toxin therapy for lower limb extensor spasticity in chronic hemiparetic patients. Stroke. 1996;27:455–60. doi: 10.1161/01.STR.27.3.455.
    1. Dettmann MA, Linder MT, Sepic SB. Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. Am J Phys Med. 1987;66:77–90.
    1. von Schroeder HP, Coutts RD, Lyden PD, Billings E, Nickel VL. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32:25–31.
    1. Pinzur MS, Sherman R, DiMonte-Levine P, Trimble J. Gait changes in adult onset hemiplegia. Am J Phys Med. 1987;66:228–37. doi: 10.1097/00002060-198710000-00003.
    1. Burbaud P, Wiart L, Dubos JL, Gaujard E, Debelleix X, Joseph PA, et al. A randomised, double blind, placebo controlled trial of botulinum toxin in the treatment of spastic foot in hemiparetic patients. J Neurol Neurosurg Psychiatry. 1996;61:265–9. doi: 10.1136/jnnp.61.3.265.
    1. Brandstater ME, de Bruin H, Gowland C, Clark BM. Hemiplegic gait: analysis of temporal variables. Arch Phys Med Rehabil. 1983;64:583–7.
    1. Boudarham J, Roche N, Pradon D, Delouf E, Bensmail D, Zory R. Effects of quadriceps muscle fatigue on stiff-knee gait in patients with hemiparesis. PLoS One. 2014;9:e94138. doi:10.1371/journal.pone.0094138.
    1. Galli M, Cimolin V, Rigoldi C, Tenore N, Albertini G. Gait patterns in hemiplegic children with cerebral palsy: comparison of right and left hemiplegia. [Internet]. Res Dev Disabil. 2010. doi:10.1016/j.ridd.2010.07.007.
    1. Kinsella S, Moran K. Gait pattern categorization of stroke participants with equinus deformity of the foot. Gait Posture. 2008;27:144–51. doi:10.1016/j.gaitpost.2007.03.008.
    1. Simon SR. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech. 2004;37:1869–80. doi:10.1016/j.jbiomech.2004.02.047.
    1. Lamontagne A, Fung J, McFadyen B, Faubert J, Paquette C. Stroke affects locomotor steering responses to changing optic flow directions. Neurorehabil Neural Repair. 2010;24:457–68. doi:10.1177/1545968309355985.
    1. Bonnyaud C, Roche N, Van Hamme A, Bensmail D, Pradon D. Locomotor trajectories of stroke patients during oriented gait and turning. PLoS One. 2016;11:e0149757. doi:10.1371/journal.pone.0149757.
    1. Whittle MW. Three-dimensional motion of the center of gravity of the body during walking. Hum Mov Sci. 1997;16:347–55. doi:10.1016/S0167-9457(96)00052-8.
    1. Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, et al. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett. 1997;228:183–6. doi:10.1016/S0304-3940(97)00381-9.
    1. Mishina M, Senda M, Ishii K, Ohyama M, Kitamura S, Katayama Y. Cerebellar activation during ataxic gait in olivopontocerebellar atrophy: a PET study. Acta Neurol Scand. 2009;100:369–76. doi:10.1111/j.1600-0404.1999.tb01055.x.
    1. Barthelemy D, Nielsen JB. Corticospinal contribution to arm muscle activity during human walking. J Physiol. 2010;588:967–79. doi:10.1113/jphysiol.2009.185520.
    1. Bonnard M, Camus M, Coyle T, Pailhous J. Task-induced modulation of motor evoked potentials in upper-leg muscles during human gait: a TMS study. Eur J Neurosci. 2002;16:2225–30. doi:10.1046/j.1460-9568.2002.02295.x.
    1. Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol. 1999;81(1):129–39.
    1. Dobkin BH, Firestine A, West M, Saremi K, Woods R. Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage. 2004;23:370–81. doi:10.1016/j.neuroimage.2004.06.008.
    1. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–60. doi: 10.1097/00001756-199807130-00020.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633–9. doi:10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72:208–14. doi:10.1016/j.brainresbull.2007.01.004.
    1. Roche N, Lackmy A, Achache V, Bussel B, Katz R. Impact of transcranial direct current stimulation on spinal network excitability in humans. J Physiol. 2009;587:5653–64. doi:10.1113/jphysiol.2009.177550.
    1. Roche N, Lackmy A, Achache V, Bussel B, Katz R. Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects. J Physiol. 2011;589:2813–26. doi:10.1113/jphysiol.2011.205161.
    1. Roche N, Lackmy A, Achache V, Bussel B, Katz R. Effects of anodal tDCS on lumbar propriospinal system in healthy subjects. Clin Neurophysiol. 2012;123:1027–34. doi:10.1016/j.clinph.2011.09.011. International Federation of Clinical Neurophysiology.
    1. Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res. 2007;182:281–7. doi:10.1007/s00221-007-1093-y.
    1. Kaminski E, Steele CJ, Hoff M, Gundlach C, Rjosk V, Sehm B, et al. Transcranial direct current stimulation (tDCS) over primary motor cortex leg area promotes dynamic balance task performance. Clin Neurophysiol. 2016;127:2455–62. doi:10.1016/j.clinph.2016.03.018. International Federation of Clinical Neurophysiology.
    1. Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res. 2009;196:459–65. doi:10.1007/s00221-009-1863-9.
    1. Katz R, Pierrot-Deseilligny E. Recurrent inhibition of alpha-motoneurons in patients with upper motor neuron lesions. Brain. 1982;105:103–24. doi: 10.1093/brain/105.1.103.
    1. Marque P, Simonetta-Moreau M, Maupas E, Roques CF. Facilitation of transmission in heteronymous group II pathways in spastic hemiplegic patients. J Neurol Neurosurg Psychiatry. 2001;70:36–42. doi:10.1136/jnnp.70.1.36.
    1. Chang MC, Kim DY, Park DH. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul. 2015;8:561–6. doi:10.1016/j.brs.2015.01.411.
    1. Tanaka S, Takeda K, Otaka Y, Kita K, Osu R, Honda M, et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair. 2011;25:565–9. doi:10.1177/1545968311402091.
    1. Dumont AJL, Araujo MC, Lazzari RD, Santos CA, Carvalho DB, de Moura RCF, et al. Effects of a single session of transcranial direct current stimulation on static balance in a patient with hemiparesis: a case study. J Phys Ther Sci. 2015;27:955–8. doi:10.1589/jpts.27.955.
    1. Satow T, Kawase T, Kitamura A, Kajitani Y, Yamaguchi T, Tanabe N, et al. Combination of transcranial direct current stimulation and neuromuscular electrical stimulation improves gait ability in a patient in chronic stage of stroke. Case Rep Neurol. 2016;8:39–46. doi:10.1159/000444167.
    1. Bikson M, Name A, Rahman A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci. 2013;7:688. doi:10.3389/fnhum.2013.00688.
    1. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66:198–204. doi:10.1016/j.neuron.2010.03.035.
    1. Lefebvre S, Liew SL. Anatomical parameters of tDCS to modulate the motor system after stroke: a review. Front Neurol. 2017;8. doi:10.3389/fneur.2017.00029.
    1. Stroke—1989. Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO Task Force on Stroke and other Cerebrovascular Disorders. Stroke. 1989;20: 1407–31. Available from: .
    1. Transcranial Brain Stimulation, Chapter: Physiological basis and methodological aspects of transcranial electric stimulation (tDCS, tACS, and tRNS)., Publisher: Taylor and Francis Group, Editors: Miniussi C, Paulus W, Rossini M.
    1. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003;114:2220–2. doi: 10.1016/S1388-2457(03)00235-9.
    1. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8:383–92. doi:10.1002/jor.1100080310. Wiley Subscription Services, Inc., A Wiley Company.
    1. Winter DA, Sidwall HG, Hobson DA. Measurement and reduction of noise in kinematics of locomotion. J Biomech. 1974;7:157–9. doi: 10.1016/0021-9290(74)90056-6.
    1. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke. Cochrane Database Syst Rev. 2013;3:CD009645. doi:10.1002/14651858.CD009645.pub2.
    1. Hummel F, Cohen LG. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair. 2005;19:14–9. doi:10.1177/1545968304272698.
    1. Lefaucheur J-P. A comprehensive database of published tDCS clinical trials (2005–2016) MOTS CLÉS. Neurophysiol Clin Neurophysiol. 2016;46:319–98. doi:10.1016/j.neucli.2016.10.002. Elsevier Masson SAS.
    1. López-Alonso V, Cheeran B, Río-Rodríguez D, Fernández-Del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 2014;7:372–80. doi:10.1016/j.brs.2014.02.004.
    1. Chew T, Ho K-A, Loo CK. Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul. 2015;8:1130–7. doi:10.1016/j.brs.2015.07.031.
    1. Seo HG, Lee WH, Lee SH, Yi Y, Kim KD, Oh B-M. Robotic-assisted gait training combined with transcranial direct current stimulation in chronic stroke patients: a pilot double-blind, randomized controlled trial. Restor Neurol Neurosci. 2017. doi:10.3233/RNN-170745.
    1. Leon D, Cortes M, Elder J, Kumru H, Laxe S, Edwards DJ, et al. tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor Neurol Neurosci. 2017;35:377–84. doi:10.3233/RNN-170734.
    1. Andrade SM, Ferreira JJ de A, Rufino TS, Medeiros G, Brito JD, da Silva MA, et al. Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol Res. 2017;6412:1–7. doi:10.1080/01616412.2017.1371473.
    1. Simonetta-Moreau M. Non-invasive brain stimulation (NIBS) and motor recovery after stroke. Ann Phys Rehabil Med. 2014;57:530–42. doi:10.1016/j.rehab.2014.08.003.

Source: PubMed

3
Abonner