Protein-Pacing Caloric-Restriction Enhances Body Composition Similarly in Obese Men and Women during Weight Loss and Sustains Efficacy during Long-Term Weight Maintenance

Paul J Arciero, Rohan Edmonds, Feng He, Emery Ward, Eric Gumpricht, Alex Mohr, Michael J Ormsbee, Arne Astrup, Paul J Arciero, Rohan Edmonds, Feng He, Emery Ward, Eric Gumpricht, Alex Mohr, Michael J Ormsbee, Arne Astrup

Abstract

Short-Term protein-pacing (P; ~6 meals/day, >30% protein/day) and caloric restriction (CR, ~25% energy deficit) improves total (TBF), abdominal (ABF) and visceral (VAT) fat loss, energy expenditure, and biomarkers compared to heart healthy (HH) recommendations (3 meals/day, 15% protein/day) in obese adults. Less is known whether obese men and women respond similarly to P-CR during weight loss (WL) and whether a modified P-CR (mP-CR) is more efficacious than a HH diet during long-term (52 week) weight maintenance (WM). The purposes of this study were to evaluate the efficacy of: (1) P-CR on TBF, ABF, resting metabolic rate (RMR), and biomarkers between obese men and women during WL (weeks 0-12); and (2) mP-CR compared to a HH diet during WM (weeks 13-64). During WL, men (n = 21) and women (n = 19) were assessed for TBF, ABF, VAT, RMR, and biomarkers at weeks 0 (pre) and 12 (post). Men and women had similar reductions (p < 0.01) in weight (10%), TBF (19%), ABF (25%), VAT (33%), glucose (7%-12%), insulin (40%), leptin (>50%) and increase in % lean body mass (9%). RMR (kcals/kg bodyweight) was unchanged and respiratory quotient decreased 9%. Twenty-four subjects (mP-CR, n = 10; HH, n = 14) completed WM. mP-CR regained significantly less body weight (6%), TBF (12%), and ABF (17%) compared to HH (p < 0.05). Our results demonstrate P-CR enhances weight loss, body composition and biomarkers, and maintains these changes for 52-weeks compared to a traditional HH diet.

Keywords: abdominal obesity; caloric restriction; heart healthy; intermittent fasting; protein-pacing.

Figures

Figure 1
Figure 1
CONSORT flow diagram for study: Weight Loss (WL)-Phase 1 and Weight Maintenance (WM)-Phase 2. CON = control period.
Figure 2
Figure 2
Study Timeline for Weight Loss-Phase 1 and Weight Maintenance-Phase 2.
Figure 3
Figure 3
Body composition changes between modified protein-pacing, caloric-restriction (mP-CR) and heart healthy (HH) dietary groups during the WM period (weeks 13–64) expressed as body weight (A); abdominal fat (B); lean body mass/body weight (C); and total fat mass (D) changes. Mean ± SE.
Figure 4
Figure 4
Individual changes in fat mass and body weight during WM (Phase 2) between mP-CR and HH.

References

    1. Franz M.J., Van Wormer J.J., Crain A.L., Boucher J.L., Histon T., Caplan W., Bowman J.D., Pronk N.P. Weight-Loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007;107:1755–1767. doi: 10.1016/j.jada.2007.07.017.
    1. Gardner C.D., Kiazand A., Alhassan S., Kim S., Stafford R.S., Balise R.R., Kraemer H.C., King A.C. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: The A TO Z Weight Loss Study: A randomized trial. J. Am. Med. Assoc. 2007;297:969–977. doi: 10.1001/jama.297.9.969.
    1. Dansinger M.L., Gleason J.A., Griffith J.L., Selker H.P., Schaefer E.J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: A randomized trial. J. Am. Med. Assoc. 2005;293:43–53. doi: 10.1001/jama.293.1.43.
    1. Brehm B.J., Seeley R.J., Daniels S.R., D’Alessio D.A. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J. Clin. Endocrinol. Metab. 2003;88:1617–1623. doi: 10.1210/jc.2002-021480.
    1. Foster G.D., Wyatt H.R., Hill J.O., McGuckin B.G., Brill C., Mohammed B.S. A randomized trial of a low-carbohydrate diet for obesity. N. Engl. J. Med. 2003;348:2082–2090. doi: 10.1056/NEJMoa022207.
    1. Stern L., Iqbal N., Seshadri P., Chicano K.L., Daily D.A., McGrory J. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: One-Year follow-up of a randomized trial. Ann. Intern. Med. 2004;140:778–785. doi: 10.7326/0003-4819-140-10-200405180-00007.
    1. Heymsfield S.B., Harp J.B., Reitman M.L., Beetsch J.W., Schoeller D.A., Erondu N., Pietrobelli A. Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. Am. J. Clin. Nutr. 2007;85:346–354.
    1. Arciero P.J., Ormsbee M.J., Gentile C.L., Nindl B.C., Brestoff J.R., Ruby M. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity. 2013;21:1357–1366. doi: 10.1002/oby.20296.
    1. Astrup A., Raben A., Geiker N. The role of higher protein diets in weight control and obesity-related comorbidities. Int. J. Obes. 2014;39:721–726. doi: 10.1038/ijo.2014.216.
    1. Camhi S.M. Potential mechanisms linking low-fat diet to inflammation and metabolic syndrome. Metabolis. 2010;59:455–456. doi: 10.1016/j.metabol.2009.10.008.
    1. Larsen T.M., Dalskov S., van Baak M., Jebb S.A., Papadaki A., Pfeiffer A.F.H., Martinez J.A., Handjieva-Darlenska T., Kunesova M., Pihlsgard M., et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010;363:2102–2113. doi: 10.1056/NEJMoa1007137.
    1. Song X., Kestin M., Schwarz Y., Yang P., Hu X., Lampe J.W., Kratz M. A low-fat high-carbohydrate diet reduces plasma total adiponectin concentrations compared to a moderate-fat diet with no impact on biomarkers of systemic inflammation in a randomized controlled feeding study. Eur. J. Nutr. 2016;55:237–246. doi: 10.1007/s00394-015-0841-1.
    1. Leidy H.J., Clifton P.M., Astrup A., Wycherley T.P., Westerterp-Plantenga M.S., Luscombe-Marsh N.D., Woods S.C., Mattes R.D. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 2015;101:1320–1329. doi: 10.3945/ajcn.114.084038.
    1. Klempel M.C., Kroeger C.M., Bhutani S., Trepanowski J.F., Varady K.A. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr. J. 2012;11:98. doi: 10.1186/1475-2891-11-98.
    1. Varady K.A., Bhutani S., Klempel M.C., Kroeger C.M., Trepanowski J.F., Haus J.M., Hoddy K.K., Calvo Y. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr. J. 2013;12:146. doi: 10.1186/1475-2891-12-146.
    1. Kroeger C.M., Klempel M.C., Bhutani S., Trepanowski J.F., Tangney C.C., Varady K.A. Improvement in coronary heart disease risk factors during an intermittent fasting/calorie restriction regimen: Relationship to adipokine modulations. Nutr. Metab. 2012;9:98. doi: 10.1186/1743-7075-9-98.
    1. Tinsley G.M., La Bounty P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 2015;73:661–674. doi: 10.1093/nutrit/nuv041.
    1. Kuk J.L., Ross R. Influence of sex on total and regional fat loss in overweight and obese men and women. Int. J. Obes. 2009;33:629–634. doi: 10.1038/ijo.2009.48.
    1. De Souza R.J., Bray G.A., Carey V.J., Hall K.D., LeBoff M.S., Loria C.M., Laranjo N.M., Sacks F.M., Smith S.R. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am. J. Clin. Nutr. 2012;95:614–625. doi: 10.3945/ajcn.111.026328.
    1. Gasteyger C., Larsen T.M., Vercruysse F., Pedersen D., Toubro S., Astrup A. Visceral fat loss induced by a low-calorie diet: A direct comparison between women and men. Diabetes Obes. Metab. 2009;11:596–602. doi: 10.1111/j.1463-1326.2008.01025.x.
    1. Arciero P.J., Baur D., Connelly S., Ormsbee M.J. Timed daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance. J. Appl. Physiol. 2014;117:1–10. doi: 10.1152/japplphysiol.00152.2014.
    1. Gentile C.L., Ward E., Holst J.J., Astrup A., Ormsbee M.J., Connelly S., Arciero P.J. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women. Nutr. J. 2015;14:1–10. doi: 10.1186/s12937-015-0104-2.
    1. Lonnqvist F., Thorne A., Large V., Arner P. Sex differences in visceral fat lipolysis and metabolic complications of obesity. Arterioscler. Thromb. Vasc. Biol. 1997;17:1472–1480. doi: 10.1161/01.ATV.17.7.1472.
    1. Blaak E. Gender differences in fat metabolism. Curr. Opin. Clin. Nutr. Metab. Care. 2001;4:499–502. doi: 10.1097/00075197-200111000-00006.
    1. Pasiakos S.M., Vislocky L.M., Carbone J.W., Altieri N., Konopelski K., Freake H.C., Anderson J.M., Ferrando A.A., Wolfe R.R., Rodriguez N.R. Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J. Nutr. 2010;140:745–751. doi: 10.3945/jn.109.118372.
    1. Hector A.J., Marcotte G.R., Churchward-Venne T.A., Murphy C.H., Breen L., von Allmen M., Baker S.K., Phillips S.M. Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J. Nutr. 2015;145:246–252. doi: 10.3945/jn.114.200832.
    1. Murphy C.H., Churchward-Venne T.A., Mitchell C.J., Kolar N.M., Kassis A., Karagounis L.G., Burke L.M., Hawley J.A., Phillips S.M. Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. Am. J. Physiol. Endocrinol. Metab. 2015;308:734–743. doi: 10.1152/ajpendo.00550.2014.
    1. Areta J.L., Burke L.M., Camera D.M., West D.W., Crawshay S., Moore D.R., Stellingwerff T., Phillips S.M., Hawley J.A., Coffey V.G. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am. J. Physiol. Endocrinol. Metab. 2014;306:989–997. doi: 10.1152/ajpendo.00590.2013.
    1. Considine R.V., Sinha M.K., Heiman M.L., Kriauciunas A., Stephens T.W., Nyce M.R., Ohannesian J.P., Marco C.C., McKee L.J., Bauer T.L., et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996;334:292–295. doi: 10.1056/NEJM199602013340503.
    1. Havel P.J., Kasim-Karakas S., Mueller W., Johnson P.R., Gingerich R.L., Stern J.S. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: Effects of dietary fat content and sustained weight loss. J. Clin. Endocrinol. Metab. 1996;81:4406–4413.
    1. MacLean P.S., Higgins J.A., Giles E.D., Sherk V.D., Jackman M.R. The role for adipose tissue in weight regain after weight loss. Obes. Rev. 2015;16:45–54. doi: 10.1111/obr.12255.
    1. Harvie M.N., Pegington M., Mattson M.P., Frystyk J., Dillon B., Evans G. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. 2011;35:714–727. doi: 10.1038/ijo.2010.171.
    1. Staiger H., Tschritter O., Machann J., Thamer C., Fritsche A., Maerker E., Schick F., Häring H.U., Stumvoll M. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes. Res. 2003;11:368–372. doi: 10.1038/oby.2003.48.
    1. Klempel M.C., Varady K.A. Reliability of leptin, but not adiponectin, as a biomarker for diet-induced weight loss in humans. Nutr. Rev. 2011;69:145–154. doi: 10.1111/j.1753-4887.2011.00373.x.
    1. Koh S.J., Hyun Y.J., Choi S.Y., Chae J.S., Kim J.Y., Park S., Ahn C.M., Jang Y., Lee J.H. Influence of age and visceral fat area on plasma adiponectin concentrations in women with normal glucose tolerance. Clin. Chim. Acta. 2008;389:45–50. doi: 10.1016/j.cca.2007.11.017.
    1. Clifton P.M., Bastiaans K., Keogh J.B. High protein diets decrease total and abdominal fat and improve CVD risk profile in overweight and obese men and women with elevated triacylglycerol. Nutr. Metab. Cardiovasc. Dis. 2009;19:548–554. doi: 10.1016/j.numecd.2008.10.006.
    1. Pekkarinen T., Kaukua J., Mustajoki P. Long-Term weight maintenance after a 17-week weight loss intervention with or without a one-year maintenance program: A randomized controlled trial. J. Obes. 2015;2015:651460. doi: 10.1155/2015/651460.
    1. Anderson J.W., Konz E.C., Frederich R.C., Wood C.L. Long-Term weight-loss maintenance: A meta-analysis of US studies. Am. J. Clin. Nutr. 2001;74:579–584.
    1. Varady K.A., Hellerstein M.K. Alternate-Day fasting and chronic disease prevention: A review of human and animal trials. Am. J. Clin. Nutr. 2007;86:7–13.
    1. Malik V.S., Hu F.B. Popular weight-loss diets: from evidence to practice. Nat. Clin. Pract. Cardiovasc. Med. 2007;4:34–41. doi: 10.1038/ncpcardio0726.
    1. Rosenbaum M., Hirsch J., Gallagher D.A., Leibel R.L. Long-Term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am. J. Clin. Nutr. 2008;88:906–912.
    1. Sumithran P., Prendergast L.A., Delbridge E., Purcell K., Shulkes A., Kriketos A., Proietto J. Long-Term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011;365:1597–1604. doi: 10.1056/NEJMoa1105816.
    1. Soenen S., Bonomi A.G., Lemmens S.G., Scholte J., Thijssen M.A., van Berkum F., Westerterp-Plantenga M.S. Relatively high-protein or ‘low-carb’ energy-restricted diets for body weight loss and body weight maintenance? Physiol. Behav. 2012;107:374–380. doi: 10.1016/j.physbeh.2012.08.004.
    1. Belza A., Ritz C., Sorensen M.Q., Holst J.J., Rehfeld J.F., Astrup A. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am. J. Clin. Nutr. 2013;97:980–989. doi: 10.3945/ajcn.112.047563.
    1. Maersk M., Belza A., Holst J.J., Fenger-Gron M., Pedersen S.B., Astrup A., Richelsen B. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: A controlled trial. Eur. J. Clin. Nutr. 2012;66:523–529. doi: 10.1038/ejcn.2011.223.
    1. Schmidt J.B., Gregersen N.T., Pedersen S.D., Arentoft J.L., Ritz C., Schwartz T.W., Holst J.J., Astrup A., Sjodin A. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am. J. Physiol. Endocrinol. Metab. 2014;306:1248–1256. doi: 10.1152/ajpendo.00569.2013.
    1. Dhillon J., Craig B.A., Leidy H.J., Amankwaah A.F., Osei-Boadi Anguah K., Jacobs A., Jones B.L., Jones J.B., Keeler C.L., Keller C.E., et al. The effects of increased protein intake on fullness: A meta-analysis and its limitations. J. Acad. Nutr. Diet. 2016;116:968–983. doi: 10.1016/j.jand.2016.01.003.

Source: PubMed

3
Abonner