The Impact of Obesity on the Cardiovascular System

Imre Csige, Dóra Ujvárosy, Zoltán Szabó, István Lőrincz, György Paragh, Mariann Harangi, Sándor Somodi, Imre Csige, Dóra Ujvárosy, Zoltán Szabó, István Lőrincz, György Paragh, Mariann Harangi, Sándor Somodi

Abstract

Obesity is a growing health problem worldwide. It is associated with an increased cardiovascular risk on the one hand of obesity itself and on the other hand of associated medical conditions (hypertension, diabetes, insulin resistance, and sleep apnoea syndrome). Obesity has an important role in atherosclerosis and coronary artery disease. Obesity leads to structural and functional changes of the heart, which causes heart failure. The altered myocardial structure increases the risk of atrial fibrillation and sudden cardiac death. However, obesity also has a protective effect on the clinical outcome of underlying cardiovascular disease, the phenomenon called obesity paradox. The improved cardiac imaging techniques allow the early detection of altered structure and function of the heart in obese patients. In this review, we attempt to summarize the relationship between obesity and cardiovascular diseases and outline the underlying mechanisms. The demonstrated new techniques of cardiac diagnostic procedures allow for the early detection and treatment of subclinical medical conditions and, therefore, the prevention of cardiovascular events.

Figures

Figure 1
Figure 1
The pathomechanism of coronary artery disease in obesity.
Figure 2
Figure 2
The pathomechanism of heart failure in obesity.
Figure 3
Figure 3
The pathomechanism of atrial fibrillation in obesity.
Figure 4
Figure 4
Diagnosing diastolic dysfunction with echocardiography. Transmitral flow velocities measured with pulsatile wave Doppler technique. The ratio (E/A) of the early diastolic peak velocity (E) and the late diastolic velocity (A) is lower than 1. Deceleration time (DT) is the interval from the peak of the wave E to its end (marked with a yellow line). In this case, its prolongation was measured (310 sec). The above alterations prove the left ventricular diastolic dysfunction (relaxation disorder).

References

    1. Ng M., Fleming T., Robinson M., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384(9945):766–781. doi: 10.1016/S0140-6736(14)60460-8.
    1. Poirier P., Giles T. D., Bray G. A., et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113(6):898–918. doi: 10.1161/CIRCULATIONAHA.106.171016.
    1. Zeller M., Steg P. G., Ravisy J., et al. Relation between body mass index, waist circumference, and death after acute myocardial infarction. Circulation. 2008;118(5):482–490. doi: 10.1161/CIRCULATIONAHA.107.753483.
    1. Yusuf S., Hawken S., Ôunpuu S., et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The Lancet. 2004;364(9438):937–952. doi: 10.1016/S0140-6736(04)17018-9.
    1. Ashwell M., Hsieh S. D. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. International Journal of Food Sciences and Nutrition. 2005;56(5):303–307. doi: 10.1080/09637480500195066.
    1. Rocha V. Z., Libby P. Obesity, inflammation, and atherosclerosis. Nature Reviews Cardiology. 2009;6(6):399–409. doi: 10.1038/nrcardio.2009.55.
    1. Ross R. Atherosclerosis--an inflammatory disease. The New England Journal of Medicine. 1999;340(2):115–126. doi: 10.1056/NEJM199901143400207.
    1. Shoelson S. E., Herrero L., Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169–2180. doi: 10.1053/j.gastro.2007.03.059.
    1. Ridker P. M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. Journal of the American College of Cardiology. 2007;49(21):2129–2138. doi: 10.1016/j.jacc.2007.02.052.
    1. Pradhan A. D., Manson J. E., Rifai N., Buring J. E., Ridker P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Journal of the American Medical Association. 2001;286(3):327–334. doi: 10.1001/jama.286.3.327.
    1. Esposito K., Pontillo A., di Palo C., et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289(14):1799–1804. doi: 10.1001/jama.289.14.1799.
    1. McGill H. C., McMahan C. A., Herderick E. E., et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–2718. doi: 10.1161/01.cir.0000018121.67607.ce.
    1. Manson J. A. E., Colditz G. A., Stampfer M. J., et al. A prospective study of obesity and risk of coronary heart disease in women. New England Journal of Medicine. 1990;322(13):882–889. doi: 10.1056/NEJM199003293221303.
    1. Wilson P. W. F., D'Agostino R. B., Sullivan L., Parise H., Kannel W. B. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Archives of Internal Medicine. 2002;162(16):1867–1872. doi: 10.1001/archinte.162.16.1867.
    1. Din-Dzietham R., Liu Y., Bielo M. V., Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation. 2007;116(13):1488–1496. doi: 10.1161/CIRCULATIONAHA.106.683243.
    1. Madala M. C., Franklin B. A., Chen A. Y., et al. Obesity and age of first non-ST-segment elevation myocardial infarction. Journal of the American College of Cardiology. 2008;52(12):979–985. doi: 10.1016/j.jacc.2008.04.067.
    1. Das S. R., Alexander K. P., Chen A. Y., et al. Impact of body weight and extreme obesity on the presentation, treatment, and in-hospital outcomes of 50,149 patients with ST-segment elevation myocardial infarction results from the NCDR (National Cardiovascular Data Registry) Journal of the American College of Cardiology. 2011;58(25):2642–2650. doi: 10.1016/j.jacc.2011.09.030.
    1. Jamil G., Jamil M., Alkhazraji H., et al. Risk factor assessment of young patients with acute myocardial infarction. American Journal of Cardiovascular Disease. 2013;3(3):170–174.
    1. Lavie C. J., Milani R. V., Ventura H. O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. Journal of the American College of Cardiology. 2009;53(21):1925–1932. doi: 10.1016/j.jacc.2008.12.068.
    1. Mozaffarian D., Benjamin E. J., Go A. S., et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322. doi: 10.1161/CIR.0000000000000152.
    1. Kenchaiah S., Evans J. C., Levy D., et al. Obesity and the risk of heart failure. New England Journal of Medicine. 2002;347(5):305–313. doi: 10.1056/NEJMoa020245.
    1. Alpert M. A., Terry B. E., Mulekar M., et al. Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. The American Journal of Cardiology. 1997;80(6):736–740. doi: 10.1016/S0002-9149(97)00505-5.
    1. Alpert M. A., Omran J., Bostick B. P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function. Current Obesity Reports. 2016;5(4):424–434. doi: 10.1007/s13679-016-0235-6.
    1. Schmieder R. E., Messerli F. H. Does obesity influence early target organ damage in hypertensive patients? Circulation. 1993;87(5):1482–1488. doi: 10.1161/01.CIR.87.5.1482.
    1. Ebong I. A., Goff D. C., Jr., Rodriguez C. J., Chen H., Bertoni A. G. Mechanisms of heart failure in obesity. Obesity Research & Clinical Practice. 2014;8(6):e540–e548. doi: 10.1016/j.orcp.2013.12.005.
    1. Rabbia F., Silke B., Conterno A., et al. Assessment of cardiac autonomic modulation during adolescent obesity. Obesity Research. 2003;11(4):541–548. doi: 10.1038/oby.2003.76.
    1. Ahmed A., Blackman M. R., White M., Anker S. D. Emphasis on abdominal obesity as a modifier of eplerenone effect in heart failure: hypothesis-generating signals from EMPHASIS-HF. European Journal of Heart Failure. 2017;19(9):1198–1200. doi: 10.1002/ejhf.884.
    1. Olivier A., Pitt B., Girerd N., et al. Effect of eplerenone in patients with heart failure and reduced ejection fraction: potential effect modification by abdominal obesity. Insight from the EMPHASIS-HF trial. European Journal of Heart Failure. 2017;19(9):1186–1197. doi: 10.1002/ejhf.792.
    1. Russo C., Sera F., Jin Z., et al. Abdominal adiposity, general obesity, and subclinical systolic dysfunction in the elderly: a population-based cohort study. European Journal of Heart Failure. 2016;18(5):537–544. doi: 10.1002/ejhf.521.
    1. de Simone G., Palmieri V., Bella J. N., et al. Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. Journal of Hypertension. 2002;20(2):323–331. doi: 10.1097/00004872-200202000-00024.
    1. Levine B., Kalman J., Mayer L., Fillit H. M., Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. The New England Journal of Medicine. 1990;323(4):236–241. doi: 10.1056/NEJM199007263230405.
    1. Torre-Amione G., Kapadia S., Benedict C., Oral H., Young J. B., Mann D. L. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD) Journal of the American College of Cardiology. 1996;27(5):1201–1206. doi: 10.1016/0735-1097(95)00589-7.
    1. Tsutamoto T., Hisanaga T., Wada A., et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. Journal of the American College of Cardiology. 1998;31(2):391–398. doi: 10.1016/S0735-1097(97)00494-4.
    1. Cavalera M., Wang J. H., Frangogiannis N. G. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Translational Research. 2014;164(4):323–335. doi: 10.1016/j.trsl.2014.05.001.
    1. Karmazyn M., Purdham D. M., Rajapurohitam V., Zeidan A. Signalling mechanisms underlying the metabolic and other effects of adipokines on the heart. Cardiovascular Research. 2008;79(2):279–286. doi: 10.1093/cvr/cvn115.
    1. Schram K., Sweeney G. Implications of myocardial matrix remodeling by adipokines in obesity-related heart failure. Trends in Cardiovascular Medicine. 2008;18(6):199–205. doi: 10.1016/j.tcm.2008.10.001.
    1. Smith C. C. T., Yellon D. M. Adipocytokines, cardiovascular pathophysiology and myocardial protection. Pharmacology & Therapeutics. 2011;129(2):206–219. doi: 10.1016/j.pharmthera.2010.09.003.
    1. Lipina C., Hundal H. S. Lipid modulation of skeletal muscle mass and function. Journal of Cachexia, Sarcopenia and Muscle. 2017;8(2):190–201. doi: 10.1002/jcsm.12144.
    1. Horwich T. B., Fonarow G. C. Glucose, obesity, metabolic syndrome, and diabetes relevance to incidence of heart failure. Journal of the American College of Cardiology. 2010;55(4):283–293. doi: 10.1016/j.jacc.2009.07.029.
    1. Cozzolino D., Grandone A., Cittadini A., et al. Subclinical myocardial dysfunction and cardiac autonomic dysregulation are closely associated in obese children and adolescents: the potential role of insulin resistance. PLoS One. 2015;10(4, article e0123916) doi: 10.1371/journal.pone.0123916.
    1. Poirier P., Giles T. D., Bray G. A., et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(5):968–976. doi: 10.1161/01.ATV.0000216787.85457.f3.
    1. Schoonderwoerd B. A., Smit M. D., Pen L., Van Gelder I. C. New risk factors for atrial fibrillation: causes of ‘not-so-lone atrial fibrillation’. Europace. 2008;10(6):668–673. doi: 10.1093/europace/eun124.
    1. Asghar O., Alam U., Hayat S. A., Aghamohammadzadeh R., Heagerty A. M., Malik R. A. Obesity, diabetes and atrial fibrillation; epidemiology, mechanisms and interventions. Current Cardiology Reviews. 2012;8(4):253–264. doi: 10.2174/157340312803760749.
    1. Hubert H. B., Feinleib M., McNamara P. M., Castelli W. P. Obesity as an independent risk factor for cardiovascular-disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–977. doi: 10.1161/01.CIR.67.5.968.
    1. Wang T. J., Parise H., Levy D., et al. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292(20):2471–2477. doi: 10.1001/jama.292.20.2471.
    1. Authors/Task Force Members, Camm A. J., Lip G. Y. H., et al. 2012 focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation: developed with the special contribution of the European Heart Rhythm Association. Ep Europace. 2012;14(10):1385–1413. doi: 10.1093/europace/eus305.
    1. Tedrow U. B., Conen D., Ridker P. M., et al. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation: the WHS (women’s health study) Journal of the American College of Cardiology. 2010;55(21):2319–2327. doi: 10.1016/j.jacc.2010.02.029.
    1. Gami A. S., Hodge D. O., Herges R. M., et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. Journal of the American College of Cardiology. 2007;49(5):565–571. doi: 10.1016/j.jacc.2006.08.060.
    1. Di Salvo G., Pacileo G., Del Giudice E. M., et al. Atrial myocardial deformation properties in obese nonhypertensive children. Journal of the American Society of Echocardiography. 2008;21(2):151–156. doi: 10.1016/j.echo.2007.05.028.
    1. Zlochiver S., Munoz V., Vikstrom K. L., Taffet S. M., Berenfeld O., Jalife J. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophysical Journal. 2008;95(9):4469–4480. doi: 10.1529/biophysj.108.136473.
    1. Maesen B., Zeemering S., Afonso C., et al. Rearrangement of atrial bundle architecture and consequent changes in anisotropy of conduction constitute the 3-dimensional substrate for atrial fibrillation. Circulation: Arrhythmia and Electrophysiology. 2013;6(5):967–975. doi: 10.1161/CIRCEP.113.000050.
    1. Eckstein J., Zeemering S., Linz D., et al. Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation: evidence from simultaneous endo-epicardial high-density activation mapping. Circulation: Arrhythmia and Electrophysiology. 2013;6(2):334–341. doi: 10.1161/CIRCEP.113.000342.
    1. Pasarica M., Sereda O. R., Redman L. M., et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–725. doi: 10.2337/db08-1098.
    1. Munger T. M., Dong Y. X., Masaki M., et al. Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation. Journal of the American College of Cardiology. 2012;60(9):851–860. doi: 10.1016/j.jacc.2012.03.042.
    1. Magnani J. W., Lopez F. L., Soliman E. Z., Maclehose R. F., Crow R. S., Alonso A. P wave indices, obesity, and the metabolic syndrome: the atherosclerosis risk in communities study. Obesity. 2012;20(3):666–672. doi: 10.1038/oby.2011.53.
    1. Abed H. S., Samuel C. S., Lau D. H., et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013;10(1):90–100. doi: 10.1016/j.hrthm.2012.08.043.
    1. Lee S. H., Chen Y. C., Chen Y. J., et al. Tumor necrosis factor-α alters calcium handling and increases arrhythmogenesis of pulmonary vein cardiomyocytes. Life Sciences. 2007;80(19):1806–1815. doi: 10.1016/j.lfs.2007.02.029.
    1. Mohamed-Ali V., Goodrick S., Bulmer K., Holly J. M. P., Yudkin J. S., Coppack S. W. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. American Journal of Physiology-Endocrinology and Metabolism. 1999;277(6):E971–E975. doi: 10.1152/ajpendo.1999.277.6.e971.
    1. Venteclef N., Guglielmi V., Balse E., et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal. 2015;36(13):795–805. doi: 10.1093/eurheartj/eht099.
    1. Jeong E. M., Liu M., Sturdy M., et al. Metabolic stress, reactive oxygen species, and arrhythmia. Journal of Molecular and Cellular Cardiology. 2012;52(2):454–463. doi: 10.1016/j.yjmcc.2011.09.018.
    1. Rossi A., Enriquez-Sarano M., Burnett J. C., Jr., Lerman A., Abel M. D., Seward J. B. Natriuretic peptide levels in atrial fibrillation: a prospective hormonal and Doppler-echocardiographic study. Journal of the American College of Cardiology. 2000;35(5):1256–1262. doi: 10.1016/S0735-1097(00)00515-5.
    1. Novo G., Guttilla D., Fazio G., Cooper D., Novo S. The role of the renin-angiotensin system in atrial fibrillation and the therapeutic effects of ACE-Is and ARBS. British Journal of Clinical Pharmacology. 2008;66(3):345–351. doi: 10.1111/j.1365-2125.2008.03234.x.
    1. Karason K., Molgaard H., Wikstrand J., Sjostrom L. Heart rate variability in obesity and the effect of weight loss. The American Journal of Cardiology. 1999;83(8):1242–1247. doi: 10.1016/S0002-9149(99)00066-1.
    1. Jouven X., Desnos M., Guerot C., Ducimetiere P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation. 1999;99(15):1978–1983. doi: 10.1161/01.CIR.99.15.1978.
    1. Abel E. D., Litwin S. E., Sweeney G. Cardiac remodeling in obesity. Physiological Reviews. 2008;88(2):389–419. doi: 10.1152/physrev.00017.2007.
    1. Lalani A. P., Kanna B., John J., Ferrick K. J., Huber M. S., Shapiro L. E. Abnormal signal-averaged electrocardiogram (SAECG) in obesity. Obesity Research. 2000;8(1):20–28. doi: 10.1038/oby.2000.4.
    1. Huang H., Amin V., Gurin M., et al. Diet-induced obesity causes long QT and reduces transcription of voltage-gated potassium channels. Journal of Molecular and Cellular Cardiology. 2013;59:151–158. doi: 10.1016/j.yjmcc.2013.03.007.
    1. McCully B. H., Hasan W., Streiff C. T., et al. Sympathetic cardiac hyperinnervation and atrial autonomic imbalance in diet-induced obesity promote cardiac arrhythmias. American Journal of Physiology-Heart and Circulatory Physiology. 2013;305(10):H1530–H1537. doi: 10.1152/ajpheart.00196.2013.
    1. Kalantar-Zadeh K., Block G., Horwich T., Fonarow G. C. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. Journal of the American College of Cardiology. 2004;43(8):1439–1444. doi: 10.1016/j.jacc.2003.11.039.
    1. Oreopoulos A., Padwal R., Kalantar-Zadeh K., Fonarow G. C., Norris C. M., McAlister F. A. Body mass index and mortality in heart failure: a meta-analysis. American Heart Journal. 2008;156(1):13–22. doi: 10.1016/j.ahj.2008.02.014.
    1. Romero-Corral A., Montori V. M., Somers V. K., et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. The Lancet. 2006;368(9536):666–678. doi: 10.1016/S0140-6736(06)69251-9.
    1. Mehta R. H., Califf R. M., Garg J., et al. The impact of anthropomorphic indices on clinical outcomes in patients with acute ST-elevation myocardial infarction. European Heart Journal. 2007;28(4):415–424. doi: 10.1093/eurheartj/ehl329.
    1. Badheka A. O., Rathod A., Kizilbash M. A., et al. Influence of obesity on outcomes in atrial fibrillation: yet another obesity paradox. The American Journal of Medicine. 2010;123(7):646–651. doi: 10.1016/j.amjmed.2009.11.026.
    1. Wang J., Yang Y. M., Zhu J., Zhang H., Shao X. H. Obesity paradox in patients with atrial fibrillation and heart failure. International Journal of Cardiology. 2014;176(3):1356–1358. doi: 10.1016/j.ijcard.2014.07.264.
    1. Sharma A., Lavie C. J., Borer J. S., et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. The American Journal of Cardiology. 2015;115(10):1428–1434. doi: 10.1016/j.amjcard.2015.02.024.
    1. Zafrir B., Salman N., Crespo-Leiro M. G., et al. Body surface area as a prognostic marker in chronic heart failure patients: results from the Heart Failure Registry of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure. 2016;18(7):859–868. doi: 10.1002/ejhf.551.
    1. Ellis S. G., Elliott J., Horrigan M., Raymond R. E., Howell G. Low-normal or excessive body mass index: newly identified and powerful risk factors for death and other complications with percutaneous coronary intervention. The American Journal of Cardiology. 1996;78(6):642–646. doi: 10.1016/S0002-9149(96)00386-4.
    1. Gurm H. S., Whitlow P. L., Kip K. E., BARI Investigators The impact of body mass index on short- and long-term outcomes inpatients undergoing coronary revascularization: insights from the bypass angioplasty revascularization investigation (BARI) Journal of the American College of Cardiology. 2002;39(5):834–840. doi: 10.1016/S0735-1097(02)01687-X.
    1. Hastie C. E., Padmanabhan S., Slack R., et al. Obesity paradox in a cohort of 4880 consecutive patients undergoing percutaneous coronary intervention. European Heart Journal. 2010;31(2):222–226. doi: 10.1093/eurheartj/ehp317.
    1. Oreopoulos A., McAlister F. A., Kalantar-Zadeh K., et al. The relationship between body mass index, treatment, and mortality in patients with established coronary artery disease: a report from APPROACH. European Heart Journal. 2009;30(21):2584–2592. doi: 10.1093/eurheartj/ehp288.
    1. Nikolsky E., Kosinski E., Mishkel G. J., et al. Impact of obesity on revascularization and restenosis rates after bare-metal and drug-eluting stent implantation (from the TAXUS-IV trial) The American Journal of Cardiology. 2005;95(6):709–715. doi: 10.1016/j.amjcard.2004.11.020.
    1. Akin I., Tölg R., Hochadel M., et al. No evidence of “obesity paradox” after treatment with drug-eluting stents in a routine clinical practice: results from the prospective multicenter German (German Drug-Eluting Stent) Registry. JACC: Cardiovascular Interventions. 2012;5(2):162–169. doi: 10.1016/j.jcin.2011.09.021.
    1. Gruberg L., Weissman N. J., Waksman R., et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? Journal of the American College of Cardiology. 2002;39(4):578–584. doi: 10.1016/S0735-1097(01)01802-2.
    1. Holmes D. R., Jr, White H. D., Pieper K. S., Ellis S. G., Califf R. M., Topol E. J. Effect of age on outcome with primary angioplasty versus thrombolysis. Journal of the American College of Cardiology. 1999;33(2):412–419. doi: 10.1016/S0735-1097(98)00579-8.
    1. Calle E. E., Thun M. J., Petrelli J. M., Rodriguez C., Heath C. W., Jr Body-mass index and mortality in a prospective cohort of U.S. adults. New England Journal of Medicine. 1999;341(15):1097–1105. doi: 10.1056/NEJM199910073411501.
    1. Lavie C. J., Ventura H. O. Weighing in on obesity and the obesity paradox in heart failure. Journal of Cardiac Failure. 2011;17(5):381–383. doi: 10.1016/j.cardfail.2011.02.005.
    1. Kistorp C., Faber J., Galatius S., et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation. 2005;112(12):1756–1762. doi: 10.1161/CIRCULATIONAHA.104.530972.
    1. O'Donovan G., Owen A., Kearney E. M., et al. Cardiovascular disease risk factors in habitual exercisers, lean sedentary men and abdominally obese sedentary men. International Journal of Obesity. 2005;29(9):1063–1069. doi: 10.1038/sj.ijo.0803004.
    1. Goossens C., Marques M. B., Derde S., et al. Premorbid obesity, but not nutrition, prevents critical illness-induced muscle wasting and weakness. Journal of Cachexia, Sarcopenia and Muscle. 2017;8(1):89–101. doi: 10.1002/jcsm.12131.
    1. De Rosa M., Gambardella J., Shu J., Santulli G. Dietary fat is a key determinant in balancing mitochondrial dynamics in heart failure: a novel mechanism underlying the obesity paradox. Cardiovascular Research. 2018;114(7):925–927. doi: 10.1093/cvr/cvy074.
    1. Gambardella J., Trimarco B., Iaccarino G., Santulli G. New insights in cardiac calcium handling and excitation-contraction coupling. Advances in Experimental Medicine and Biology. 2018;1067:373–385. doi: 10.1007/5584_2017_106.
    1. Guo Y., Wang Z., Qin X., et al. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart. Cardiovascular Research. 2018;114(7):979–991. doi: 10.1093/cvr/cvy052.
    1. Schunkert H., Harrell L., Palacios I. F. Implications of small reference vessel diameter in patients undergoing percutaneous coronary revascularization. Journal of the American College of Cardiology. 1999;34(1):40–48. doi: 10.1016/S0735-1097(99)00181-3.
    1. Foley D. P., Melkert R., Serruys P. W. Influence of coronary vessel size on renarrowing process and late angiographic outcome after successful balloon angioplasty. Circulation. 1994;90(3):1239–1251. doi: 10.1161/01.CIR.90.3.1239.
    1. Powell B. D., Lennon R. J., Lerman A., et al. Association of body mass index with outcome after percutaneous coronary intervention. The American Journal of Cardiology. 2003;91(4):472–476. doi: 10.1016/S0002-9149(02)03252-6.
    1. Chase P., Arena R., Myers J., et al. Relation of the prognostic value of ventilatory efficiency to body mass index in patients with heart failure. The American Journal of Cardiology. 2008;101(3):348–352. doi: 10.1016/j.amjcard.2007.08.042.
    1. Artero E. G., Lee D. C., Lavie C. J., et al. Effects of muscular strength on cardiovascular risk factors and prognosis. Journal of Cardiopulmonary Rehabilitation and Prevention. 2012;32(6):351–358. doi: 10.1097/HCR.0b013e3182642688.
    1. Clark A. L. Tipping the scales toward fitness as a key modifier of the obesity paradox in heart failure. European Journal of Heart Failure. 2016;18(5):554–555. doi: 10.1002/ejhf.545.
    1. Piepoli M. F., Corrà U., Veglia F., et al. Exercise tolerance can explain the obesity paradox in patients with systolic heart failure: data from the MECKI Score Research Group. European Journal of Heart Failure. 2016;18(5):545–553. doi: 10.1002/ejhf.534.
    1. Zamora E., Lupón J., Enjuanes C., et al. No benefit from the obesity paradox for diabetic patients with heart failure. European Journal of Heart Failure. 2016;18(7):851–858. doi: 10.1002/ejhf.576.
    1. Piepoli M. F. Obesity in heart failure: is it time to rethink the paradox? European Journal of Heart Failure. 2017;19(12):p. 1736. doi: 10.1002/ejhf.819.
    1. Cuspidi C., Rescaldani M., Sala C., Grassi G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. Journal of Hypertension. 2014;32(1):16–25. doi: 10.1097/HJH.0b013e328364fb58.
    1. Rocha I. E. G. M., Victor E. G., Braga M. C., Silva O. B. e., Becker M. d. M. C. Echocardiography evaluation for asymptomatic patients with severe obesity. Arquivos Brasileiros de Cardiologia. 2007;88(1):52–58. doi: 10.1590/S0066-782X2007000100009.
    1. Nagueh S. F., Appleton C. P., Gillebert T. C., et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Journal of the American Society of Echocardiography. 2009;22(2):107–133. doi: 10.1016/j.echo.2008.11.023.
    1. Di Bello V., Fabiani I., Conte L., et al. New echocardiographic techniques in the evaluation of left ventricular function in obesity. Obesity (Silver Spring) 2013;21(5):881–892. doi: 10.1002/oby.20071.
    1. Murat Tumuklu M., Etikan I., Kisacik B., Kayikcioglu M. Effect of obesity on left ventricular structure and myocardial systolic function: assessment by tissue Doppler imaging and strain/strain rate imaging. Echocardiography. 2007;24(8):802–809. doi: 10.1111/j.1540-8175.2007.00484.x.
    1. Holland M. R., Wallace K. D., Miller J. G. Potential relationships among myocardial stiffness, the measured level of myocardial backscatter (“image brightness”), and the magnitude of the systematic variation of backscatter (cyclic variation) over the heart cycle. Journal of the American Society of Echocardiography. 2004;17(11):1131–1137. doi: 10.1016/j.echo.2004.06.004.
    1. Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Perez J. E. A relationship between ultrasonic integrated backscatter and myocardial contractile function. Journal of Clinical Investigation. 1985;76(6):2151–2160. doi: 10.1172/JCI112221.
    1. Edvardsen T., Gerber B. L., Garot J́̂., Bluemke D. A., Lima J˜. A. C., Smiseth O. A. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002;106(1):50–56. doi: 10.1161/01.CIR.0000019907.77526.75.
    1. Lang R. M., Badano L. P., Tsang W., et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Journal of the American Society of Echocardiography. 2012;25(1):3–46. doi: 10.1016/j.echo.2011.11.010.
    1. el-Gamal A., Gallagher D., Nawras A., et al. Effects of obesity on QT, RR, and QTc intervals. The American Journal of Cardiology. 1995;75(14):956–959. doi: 10.1016/S0002-9149(99)80700-0.
    1. Mshui M. E., Saikawa T., Ito K., Hara M., Sakata T. QT interval and QT dispersion before and after diet therapy in patients with simple obesity. Proceedings of the Society for Experimental Biology and Medicine. 1999;220(3):133–138. doi: 10.3181/00379727-220-44355.
    1. Lubinski A., Kornacewicz-Jach Z., Wnuk-Wojnar A. M., et al. The terminal portion of the T wave: a new electrocardiographic marker of risk of ventricular arrhythmias. Pacing and Clinical Electrophysiology. 2000;23(11P2):1957–1959. doi: 10.1111/j.1540-8159.2000.tb07061.x.
    1. Shimizu M., Ino H., Okeie K., et al. T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clinical Cardiology. 2002;25(7):335–339. doi: 10.1002/clc.4950250706.
    1. Yamaguchi M., Shimizu M., Ino H., et al. T wave peak-to-end interval and QT dispersion in acquired long QT syndrome: a new index for arrhythmogenicity. Clinical Science. 2003;105(6):671–676. doi: 10.1042/CS20030010.
    1. Braschi A., Abrignani M. G., Francavilla V. C., Francavilla G. Novel Electrocardiographic Parameters of Altered Repolarization in Uncomplicated Overweight and Obesity. Obesity. 2010;19(4):875–881. doi: 10.1038/oby.2010.252.

Source: PubMed

3
Abonner