Lycopene and Vascular Health

Ioana Mozos, Dana Stoian, Alexandru Caraba, Clemens Malainer, Jarosław O Horbańczuk, Atanas G Atanasov, Ioana Mozos, Dana Stoian, Alexandru Caraba, Clemens Malainer, Jarosław O Horbańczuk, Atanas G Atanasov

Abstract

Lycopene is a lipophilic, unsaturated carotenoid, found in red-colored fruits and vegetables, including tomatoes, watermelon, papaya, red grapefruits, and guava. The present work provides an up to date overview of mechanisms linking lycopene in the human diet and vascular changes, considering epidemiological data, clinical studies, and experimental data. Lycopene may improve vascular function and contributes to the primary and secondary prevention of cardiovascular disorders. The main activity profile of lycopene includes antiatherosclerotic, antioxidant, anti-inflammatory, antihypertensive, antiplatelet, anti-apoptotic, and protective endothelial effects, the ability to improve the metabolic profile, and reduce arterial stiffness. In this context, lycopene has been shown in numerous studies to exert a favorable effect in patients with subclinical atherosclerosis, metabolic syndrome, hypertension, peripheral vascular disease, stroke and several other cardiovascular disorders, although the obtained results are sometimes inconsistent, which warrants further studies focusing on its bioactivity.

Keywords: arterial stiffness; cardiovascular risk; endothelial function; intima-media thickness; lycopene.

Figures

Figure 1
Figure 1
Chemical structures of lycopene and other carotenoids.
Figure 2
Figure 2
Cardiovascular benefits of lycopene [supported by in vivo (*) and/or in vitro (Φ) findings].
Figure 3
Figure 3
Anti-inflammatory effects of lycopene. MMPs, matrix metalloproteinases; COX-2, cyclooxigenase 2; AGE, advanced glycation end-products; RAGE, receptors of AGE.
Figure 4
Figure 4
Anti-atherosclerotic effect of lycopene. oxLDL, oxidized LDL; VSMC, vascular smooth muscle cells.

References

    1. Abdel-Daim M. M., Eltaysh R., Hassan A., Mousa S. A. (2018). Lycopene attenuates tulathromycin and diclofenac sodium-induced cardiotoxicity in mice. Int. J. Mol. Sci. 19:e344. 10.3390/ijms19020344
    1. Abushouk A. I., Ismail A., Salem A. M. A., Afifi A. M., Abdel-Daim M. M. (2017). Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed. Pharmacother. 90, 935–946. 10.1016/j.biopha.2017.04.033
    1. Agarwal S., Rao A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 163, 739–744.
    1. Ahn J., Lee H., Jung C. H., Ha T. (2012). Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Mol. Nutr. Food Res. 56:1665–1674. 10.1002/mnfr.201200182
    1. Ahuja K. D., Pittaway J. K., Ball M. J. (2006). Effects of olive oil and tomato lycopene combination on serum lycopene, lipid profile, and lipid oxidation. Nutrition 22, 259–265. 10.1016/j.nut.2005.07.015
    1. Aman U., Vaibhav P., Balaraman R. (2012). Tomato lycopene attenuates myocardial infarction induced by isoproterenol: electrocardiographic, biochemical and anti-apoptotic study. Asian Pac. J. Trop. Biomed. 2, 345–351. 10.1016/S2221-1691(12)60054-9
    1. Anjos Ferreira A. L., Russell R. M., Rocha N., Placido Ladeira M. S., Favero Salvadori D. M., Oliveira Nascimento M. C., et al. . (2007). Effect of lycopene on doxorubicin-induced cardiotoxicity: an echocardiographic, histological and morphometrical assessment. Basic Clin. Pharmacol. Toxicol. 101, 16–24. 10.1111/j.1742-7843.2007.00070.x
    1. Atanasov A. G., Waltenberger B., Pferschy-Wenzig E. M., Linder T., Wawrosch C., Uhrin P., et al. . (2015). Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33, 1582–1614. 10.1016/j.biotechadv.2015.08.001
    1. Bae J. W., Bae J. S. (2011). Barrier protective effects of lycopene in human endothelial cells. Inflamm. Res. 60:751–758. 10.1007/s00011-011-0330-9
    1. Bansal P., Gupta S. K., Ojha S. K., Nandave M., Mittal R., Kumari S., et al. . (2006). Cardioprotective effect of lycopene in the experimental model of myocardial ischemia-reperfusion injury. Mol. Cell. Biochem. 289, 1–9. 10.1007/s11010-006-9141-7
    1. Basu A., Imrhan V. (2007). Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur. J. Clin. Nutr. 61, 295–303. 10.1038/sj.ejcn.1602510
    1. Belovic M. M., Girones-Vilaplana A., Moreno D. A., Milovanovic I. L. J., Novakovic A. R., Karaman M. A., et al. (2016). Tomato (Solanum Lycopersicum L.) processing main product (juice) and by-product (pomace) bioactivity potential measured as antioxidant activity and angiotensin-converting enzyme inhibition. J. Food Process. Preserv. 40, 1229–1237. 10.1111/jfpp.12707
    1. Blum A., Monir M., Khazim K., Peleg A., Blum N. (2007). Tomato-rich (Mediterranean) diet does not modify inflammatory markers. Clin. Invest. Med. 30, E70–E74. 10.25011/cim.v30i2.982
    1. Böhm V. (2012). Lycopene and heart health. Mol. Nutr. Food Res. 56, 296–303. 10.1002/mnfr.201100281
    1. Burton-Freeman B., Sesso H. D. (2014). Whole food versus supplement: comparing the clinical evidence of tomato intake and lycopene supplementation on cardiovascular risk factors. Adv. Nutr. 5, 457–485. 10.3945/an.114.005231
    1. Burton-Freeman B., Talbot J., Park E., Krishnankutty S., Edirisinghe I. (2012). Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol. Nutr. Food Res. 56, 622–631. 10.1002/mnfr.201100649
    1. Cavalcante J. L., Lima J. A., Redheuil A., Al-Mallah A. H. (2011). Aortic stiffness: current understanding and future directions. J. Am. Coll. Cardiol. 57, 1511–1522. 10.1016/j.jacc.2010.12.017
    1. Chen L. P., He S. Y., Zheng H., Dai Y. L. (2010). Effects and mechanisms of lycopene on the proliferation of vascular smooth muscle cells. Chin. J. Nat. Med. 8, 218–222. 10.3724/SP.J.1009.2010.00218
    1. Cheng H. M., Koutsidis G., Lodge J. K., Ashor A. W., Siervo M., Lara J. (2017). Lycopene and tomato and risk of cardiovascular diseases: a systematic review and meta-analysis of epiedemiological evidence. Crit. Rev. Food Sci. Nutr. 11, 1–18. 10.1080/10408398.2017.1362630
    1. Cooney M., Cooney M. T., Maher V., Khan B., Leong T., Graham I. (2015). Improvement in the estimation of cardiovascular risk by carotid intima-medial thickness: a report from the Dublin Cardiohealth station study. Prev. Med. Rep. 2, 725–729. 10.1016/j.pmedr.2015.08.004
    1. Costa-Rodrigues J., Pinho O., Monteiro P. R. R. (2018). Can lycopene be considered an effective protection against cardiovascular disease? Food Chem. 245, 1148–1153. 10.1016/j.foodchem.2017.11.055
    1. Denniss S. G., Haffner T. D., Kroetsch J. T., Davidson S. R., Rush J. W., Hughson R. (2008). Effect of short-term lycopene supplementation and postprandial dyslipidemia on plasma antioxidants and biomarkers of endothelial health in young, healthy individuals. Vasc. Health Risk Manag. 4, 213–222. 10.2147/vhrm.2008.04.01.213
    1. Dwyer J. H., Paul-Labrador M. J., Fan J., Shircore A. M., Merz C. N., Dwyer K. M. (2004). Progression of carotid intima-media thickness and plasma antioxidants: the Los Angeles Atherosclerosis Study. Arterioscler. Thromb. Vasc. Biol. 24, 313–319. 10.1161/01.ATV.0000109955.80818.8a
    1. Fantin F., Di Francesco V., Rossi A., Giuliano K., Marino F., Cazzadori M., et al. . (2010). Abdominal obesity and subclinical vascular damage in the elderly. J. Hypertens. 28, 333–339. 10.1097/HJH.0b013e328333d23c
    1. Figueroa A., Wong A., Hooshmand S., Sanchez-Gonzalez M. A. (2013). Effects of watermelon supplementation on arterial stiffness and wave reflection amplitude in postmenopausal women. Menopause 20, 573–577. 10.1097/GME.0b013e3182733794
    1. Figueroa A., Wong A., Jaime S. J., Gonzales J. U. (2017). Influence of L-citrulline and watermelon supplementation on vascular function and exercise performance. Curr. Opin. Clin. Nutr. Metab. Care 20, 92–98. 10.1097/MCO.0000000000000340
    1. Frederiksen H., Rasmussen S. E., Schroder M., Bysted A., Jakobsen J., Frandsen H., et al. (2007). Dietary supplementation with an extract of lycopene-rich tomatoes does not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits. Br. J. Nutr. 97, 6–10. 10.1017/S0007114507210153
    1. Gajendragadkar P. R., Hubsch A., Mäki-Petäjä K. M., Serg M., Wilkinson I. B., Cheriyan J. (2014). Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial. PLoS ONE 9:e99070. 10.1371/journal.pone.0099070
    1. Gammone M. A., Riccioni G., D'Orazio N. (2015). Carotenoids: potential allies of cardiovascular health? Food Nutr. Res. 59:26762 10.3402/fnr.v59.26762
    1. Gao Y., Jia P., Shu W., Jia D. (2016). The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes. Eur. J. Pharmacol. 774, 71–79. 10.1016/j.ejphar.2016.02.005
    1. Gianetti J., Pedrinelli R., Petrucci R., Lazzerini G., De Caterina M., Bellomo G., et al. . (2002). Inverse association between carotid intima-media thickness and the antioxidant lycopene in atherosclerosis. Am. Heart J. 143, 467–474. 10.1067/mhj.2002.120776
    1. Gitenay D., Lyan B., Rambeau M., Mazur A., Rock E. (2007). Comparison of lycopene and tomato effects on biomarkers of oxidative stress in vitamin E deficient rats. Eur. J. Nutr. 46, 468–475. 10.1007/s00394-007-0687-2
    1. Goff D. C., Jr, Lloyd-Jones D. M., Bennett G., Coady S., D'Agostino R. B., sr Gibbons R., et al. (2014). 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63(25 Pt B), 2935–2959. 10.1016/j.jacc.2013.11.005
    1. Gouranton E., Thabuis C., Riollet C., Malezet-Desmoulins C., El Yazidi C., Amiot M. J., et al. . (2011). Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J. Nutr. Biochem. 22, 642–648. 10.1016/j.jnutbio.2010.04.016
    1. Habauzit V., Verny M. A., Milenkovic D., Barber-Chamoux N., Mazur A., Dubray C., et al. . (2015). Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: a randomized, controlled, crossover trial. Am. J. Clin. Nutr. 102, 66–74. 10.3945/ajcn.114.104646
    1. Han G. M., Liu P. (2017). Higher serum lycopene is associated with reduced prevalence of hypertension in overweight or obese adults. Eur. J. Integr. Med. 13, 34–40. 10.1016/j.eujim.2017.07.002
    1. Han G. M., Meza J. L., Soliman G. A., Islam K. M., Watanabe-Galloway S. (2016a). Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutr. Res. 36, 402–407. 10.1016/j.nutres.2016.01.003
    1. Han G. M., Soliman G. A., Meza J. L., Islam K. M., Watanabe-Galloway S. (2016b). The influence of BMI on the association between serum lycopene and the metabolic syndrome. Br. J. Nutr. 115, 1292–1300. 10.1017/S0007114516000179
    1. He Q., Kong X., Wu G., Ren P., Tang H., Hao F., et al. . (2009). Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids 37, 199–208. 10.1007/s00726-008-0192-9
    1. He Q., Zhou W., Xiong C., Tan G., Chen M. (2015). Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodeling by inhibiting the nuclear factor-kappaB signaling pathway. Mol. Med. Rep. 11, 374–378. 10.3892/mmr.2014.2676
    1. He Y., Xia P., Jin H., Zhang Y., Chen B., Xu Z. (2016). Lycopene ameliorates transplant arteriosclerosis in vascular allograft transplantation by regulating the NO/cGMP pathways and Pho-associated kinases expression. Oxid. Med. Cell Longev. 2016:3128280 10.1155/2016/3128280
    1. Heber D., Lu Q. Y. (2002). Overview of mechanisms of action of lycopene. Exp. Biol. Med. 227, 920–923. 10.1177/153537020222701013
    1. Hollman P. C. H., Cassidy A., Comte B., Heinonen M., Richelle M., Richling E., et al. (2011). The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J. Nutr. 141, 989S−1009S. 10.3945/jn.110.131490
    1. Hong M. Y., Hartig N., Kaufman K., Hooshmand S., Figueroa A., Kern M. (2015). Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet. Nutr. Res. 5, 251–258. 10.1016/j.nutres.2014.12.005
    1. Hosseini B., Saedisomeolia A., Skilton M. R. (2017). Association between micronutrients intake/status and carotid intima media thickness: a systematic review. J. Acad. Nutr. Diet. 117, 69–82. 10.1016/j.jand.2016.09.031
    1. Hsu Y. M., Lai C. H., Chang C. Y., Fan C. T., Chen C. T., Wu C. H. (2008). Characterizing the lipid-lowering effects and antioxidant mechanisms of tomato paste. Biosci. Biotechnol. Biochem. 72, 677–685. 10.1271/bbb.70402
    1. Hu M. Y., Li Y. L., Jiang C. H., Liu Z. Q., Qu S. L., Huang Y. M. (2008). Comparison of lycopene and fluvastatin effects on atherosclerosis induced by a high-fat diet in rabbits. Nutrition 24, 1030–1038. 10.1016/j.nut.2008.05.006
    1. Hung C. F., Huang T. F., Chen B. H., Shieh J. M., Wu P. H., Wu W. B. (2008). Lycopene inhibits TNF-alpha-induced endothelial ICAM-1 expression and monocyte-endothelial adhesion. Eur. J. Pharmacol. 586, 275–282. 10.1016/j.ejphar.2008.03.001
    1. Ito Y., Kurata M., Suzuki K., Hamajima N., Hishida H., Aoki K. (2006). Cardiovascular disease mortality and serum carotenoid levels: a Japanese population-based follow-up study. J. Epidemiol. 16, 154–160. 10.2188/jea.16.154
    1. Jobgen W. S., Fried S. K., Fu W. J., Meininger C. J., Wu G. (2006). Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 17:571–588. 10.1016/j.jnutbio.2005.12.001
    1. Karagiannis G. S., Weile J., Bader G. D., Minta J. (2013). Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation. BMC Cardiovasc. Disord. 13:4 10.1186/1471-2261-13-4
    1. Karimi G., Ramezani M., Abdi A. (2005). Protective effects of lycopene and tomato extract against doxorubicin-induced cardiotoxicity. Phytother. Res. 19, 912–914. 10.1002/ptr.1746
    1. Karppi J., Kurl S., Laukkanen J. A., Rissanen T. H., Kauhanen J. (2011). Plasma carotenoids are related to intima-media thickness of the carotid artery wall in men from eastern Finland. J. Intern. Med. 270, 478–485. 10.1111/j.1365-2796.2011.02401.x
    1. Karppi J., Kurl S., Ronkainen K., Kauhanen J., Laukkanen J. A. (2013). Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men. PLoS ONE 8:e64107. 10.1371/journal.pone.0064107
    1. Karppi J., Laukkanen J. A., Mäkikallio T. H., Kurl S. (2012). Low serum lycopene and β-carotene increase risk of acute myocardial infarction in men. Eur. J. Public Health 22, 835–840. 10.1093/eurpub/ckr174
    1. Khan N. I., Noori S., Mahboob T. (2016). Efficacy of lycopene on modulation of renal antioxidant enzymes, ACE and ACE gene expression in hyperlipidaemic rats. J. Renin. Angiotensin Aldosterone Syst. 17:1470320316664611 10.1177/1470320316664611
    1. Kim G. H., Youn H. J. (2017). Is carotid artery ultrasound still useful method for evaluation of atherosclerosis? Korean Circ. J. 47, 1–8. 10.4070/kcj.2016.0232
    1. Kim J. Y., Paik J. K., Kim O. Y., Park H. W., Lee J. H., et al. . (2011). Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. Atherosclerosis 215, 189–195. 10.1016/j.atherosclerosis.2010.11.036
    1. Kim O. Y., Yoe H. Y., Kim H. J., Park J. Y., Kim J. Y., Lee S. H., et al. . (2010). Independent inverse relationship between serum lycopene concentration and arterial stiffness. Atherosclerosis 208, 581–586. 10.1016/j.atherosclerosis.2009.08.009
    1. Klipstein-Grobusch K., Launer L. J., Geleijnse J. M., Boeing H., Hofman A., Witteman J. C. (2000). Serum carotenoids and atherosclerosis. The Rotterdam study. Atherosclerosis 148, 49–56. 10.1016/S0021-9150(99)00221-X
    1. Kong K. W., Khoo H. E., Prasad K. N., Ismail A., Tan C. P., Rajab N. F. (2010). Revealing the power of the natural red pigment lycopene. Molecules 15, 959–987. 10.3390/molecules15020959
    1. Krasinska B., Osinaka A., Osinski M., Krasinska A., Rzymski P., Tykarshi A., et al. (2017). Standardised tomato extract as an alternative to acetylsalicylic acid in patients with primary hypertension and high cardiovascular risk – a randomized, controlled trial. Arch. Med. Sci. 10.5114/aoms.2017.69864
    1. Lee W., Ku S. K., Bae J. W., Bae J. S. (2012). Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem. Toxicol. 50, 1826–1833. 10.1016/j.fct.2012.03.003
    1. Li X. N., Lin J., Xia J., Qin L., Zhu S. Y., Li J. L. (2017). Lycopene mitigates atrazine-induced cardiac inflammation via blocking the NF-kB pathway and NO production. J. Functs Foods 29, 208–216. 10.1016/j.jff.2016.12.029
    1. Li X., Xu J. (2013). Lycopene supplement and blood pressure: an updated meta-analysis of intervention trials. Nutrients 5, 3696–3712. 10.3390/nu5093696
    1. Li Y. F., Chang Y. Y., Huang H. C., Wu Y. C., Yang M. D., Chao P. M. (2015). Tomato juice supplementation in young women reduces inflammatory adipokine levels independently of body fat reduction. Nutrition 31, 691–696. 10.1016/j.nut.2014.11.008
    1. Lo H. M., Hung C. F., Tseng Y. L., Chen B. H., Jian J. S., Wu W. B. (2007). Lycopene binds PDGF-BB and inhibits PDGF-BB-induced intracellular signaling transduction pathway in rat smooth muscle cells. Biochem. Pharmacol. 74, 54–63. 10.1016/j.bcp.2007.03.017
    1. Lomb D. J., Laurent G., Haigis M. C. (2010). Sirtuins regulate key aspects of lipid metabolism. Biochim. Biophys. Acta 1804:1652–1657. 10.1016/j.bbapap.2009.11.021
    1. Lorenz M., Fechner M., Kalkowski J., Fröhlich K., Trautmann A., Böhm V., et al. . (2012). Effects of lycopene on the initial state of atherosclerosis in New Zeeland White (NZW) rabbits. PLoS ONE 7:e30808. 10.1371/journal.pone.0030808
    1. Manabe I., Nagai R. (2003). Regulation of smooth muscle phenotype. Curr. Atheroscler. Rep. 5, 214–222. 10.1007/s11883-003-0027-9
    1. Mantzouridou F., Tsimidou M. Z. (2008). Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess. Trends Food Sci. Technol. 19, 363–371. 10.1016/j.tifs.2008.01.003
    1. McEneny J., Wade L., Young I. S., Masson L., Duthie G., McGinty A., et al. . (2013). Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J. Nutr. Biochem. 24, 163–168. 10.1016/j.jnutbio.2012.03.015
    1. McQuillan B. M., Hung J., Beilby J. P., Nidorf M., Thompson P. L. (2001). Antioxidant vitamins and the risk of carotid atherosclerosis. Perth Carotid Ultrasound Disease Assessment study (CUDAS). J. Am. Coll. Cardiol. 38, 1788–1794. 10.1016/S0735-1097(01)01676-X
    1. Milani A., Basirnejad M., Shahbazi S., Bolhassani A. (2017). Carotenoids: biochemistry, pharmacology and treatment. Br. J. Pharmacol. 174, 1290–1324. 10.1111/bph.13625
    1. Mohamadin A. M., Elberry A. A., Mariee A. D., Morsy G. M., Al-Abbasi F. A. (2012). Lycopene attenuates oxidative stress and heart lysosomal damage in isoproterenol induced cardiotoxicity in rats: a biochemical study. Pathophysiology 19, 121–130. 10.1016/j.pathophys.2012.04.005
    1. Mozos I., Borzak G., Caraba A., Mihaescu R. (2017a). Arterial stiffness in hematologic malignancies. Onco. Targets. Ther. 10, 1381–1388. 10.2147/OTT.S126852
    1. Mozos I., Luca C. T. (2017). Crosstalk between oxidative and nitrosative stress and arterial stiffness. Curr. Vasc. Pharmacol. 15, 446–456. 10.2174/1570161115666170201115428
    1. Mozos I., Maidana J. P., Stoian D., Stehlik M. (2017b). Gender differences of arterial stiffness and arterial age in smokers. Int. J. Environ. Res. Public Health 14:565 10.3390/ijerph14060565
    1. Mozos I., Stoian D., Luca C. T. (2017c). Crosstalk between vitamins A, B12, D, K, C and E status and arterial stiffness. Dis. Markers 10, 1381–1388. 10.1155/2017/8784971
    1. Müller L., Caris-Veyrat C., Lowe G., Böhm V. (2016). Lycopene and its antioxidant role in the prevention of cardiovascular diseases – A critical review. Crit. Rev. Sci. Nutr. 56, 1868–1879. 10.1080/10408398.2013.801827
    1. Müller-Nordhorn J., Binting S., Roll S., Willich S. N. (2008). An update on regional variation in cardiovascular mortality within Europe. Eur. Heart J. 29, 1316–1326. 10.1093/eurheartj/ehm604
    1. Nakamura A., Itaki C., Saito A., Yonezawa T., Aizawa K., Hirai A., et al. (2017). Possible benefits of tomato juice consumption: a pilot study on irradiation human lymphocytes from healthy donors. Nutr. J. 16:27 10.1186/s12937-017-0248-3
    1. Napolitano M., De Pascale C., Wheeler-Jones C., Botham K. M., Bravo E. (2007). Effects of lycopene on the induction of foam cell formation by modified LDL. Am. J. Physiol. Endocrinol. Metab. 293, E1820–E1827. 10.1152/ajpendo.00315.2007
    1. Naz A., Butt M. S., Sultan M. T., Qayyum M. M., Niaz R. S. (2014). Watermelon lycopene and allied health claims. EXCLI J. 13, 650–660.
    1. Oberoi D. P. S., Sogi D. S. (2017). Utilization of watermelon pulp for lycopene extraction by response surface methodology. Food Chem. 232, 316–321. 10.1016/j.foodchem.2017.04.038
    1. O'Kennedy N., Raederstorff D., Duttaroy A. K. (2017). FruitflowR: the first European Food Safety Authority-approved natural cardio-protective functional ingredient. Eur. J. Nutr. 56, 461–482. 10.1007/s00394-016-1265-2
    1. O'Leary D. H., Polak J. F., Kronmal R. A., Manolio T. A., Burke G. L., Wolfson S. K., et al. (1999). Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular health study collaborative research group. N. Engl. J. Med. 340, 14–22. 10.1056/NEJM199901073400103
    1. Opatrilova R., Kubatka P., Caprnda M., Büsselberg D., Krasnik V., Veselz P., et al. (2017). Nitric oxide in the pathophysiology of retinopathy: evidences from preclinical and clinical research. Acta Ophthalmol. 96, 222–231. 10.1111/aos.13384
    1. Palozza P., Simone R., Catalano A., Monego G., Barini A., Mele M. C., et al. . (2011). Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-κB nuclear binding and increase in PPARγ expression. J. Nutr. Biochem. 22, 259–268. 10.1016/j.jnutbio.2010.02.003
    1. Paran E., Novack V., Engelhard Y. N., Hazan-Halevy I. (2009). The effects of natural antioxidants from tomato extract in treated but uncontrolled hypertensive patients. Cardiovasc. Drugs Ther. 23, 145–151. 10.1007/s10557-008-6155-2
    1. Pereira B. L. B., Reis P. P., Severino F. E., Felix T. F., Braz M. G., Nogueira F. R., et al. . (2017). Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways. J. Nutr. Biochem. 46:117–124. 10.1016/j.jnutbio.2017.05.010
    1. Perera C. O., Yen G. M. (2007). Functional properties of carotenoids in human health. Int. J. Food Propert. 10, 201–230. 10.1080/10942910601045271
    1. Piepoli M. F., Hoes A. W., Agewall S., Albus C., Brotons C., Catapano A. L., et al. . (2016). European Guidelines on cardiovascular disease prevention in clinical practice. The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). Eur. Heart J. 37, 2315–2381. 10.1093/eurheartj/ehw106
    1. Pisoschi A. M., Pop A. (2015). The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 97:55–74. 10.1016/j.ejmech.2015.04.040
    1. Pleskovic A., Letonja M. S., Vujkovac A. C., Nikolajevic Starcevic J., Caprnda M., Curilla E., et al. (2017). Matrix metalloproteinase-3 gene polymorphism (rs3025058) affects markers atherosclerosis in type 2 diabetes mellitus. VASA 19, 1–7. 10.1024/0301-1526/a000637
    1. Rao A. V. (2002). Lycopene, tomatoes, and the prevention of coronary heart disease. Exp. Biol. Med. 227, 908–913. 10.1177/153537020222701011
    1. Ren X. S., Tong Y., Ling L., Chen D., Sun H. J., Zhou H. (2017). NLRP3 gene deletion attenuates angiotensin ii-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling. Cell. Physiol. Biochem. 44, 2269–2280. 10.1159/000486061
    1. Riccioni G., Orazio D. N., Palumbo N., Bucciarelli V., Ilio Ed Bazzano L. A., et al. . (2009). Relationship between plasma antioxidant concentrations and carotid intima-media thickness: the Asymptomatic Carotid Atherosclerotic Disease in Manfredonia Study. Eur. J. Cardiovasc. Prev. Rehabil. 16, 351–357. 10.1097/HJR.0b013e328325d807
    1. Riccioni G., D'Orazio N., Speranza L., Di Ilio E., Glaude M., Bucciarelli V., et al. . (2010). Carotenoids and asymptomatic carotid atherosclerosis. J. Biol. Regul. Homeost. Agents 24, 447–452.
    1. Riccioni G., Scotti L., Di Ilio E., Bucciarelli V., Ballone E., De Girolamo M., et al. . (2011). Lycopene and preclinical carotid atherosclerosis. J. Biol. Regul. Homeost. Agents 25, 435–441.
    1. Ried K., Fakler P. (2011). Protective effect of lycopene on serum cholesterol and blood pressure: meta-analyses of intervention trials. Maturitas 68, 299–310. 10.1016/j.maturitas.2010.11.018
    1. Rissanen T. H., Voutilainen S., Nyyssönen K., Lakka T. A., Sivenius J., Salonen R., et al. . (2001). Low serum lycopene concentration is associated with an excess incidence of acute coronary events and stroke: the Kuopio ischaemic heart disease risk factor study. Br. J. Nutr. 85, 749–754. 10.1079/BJN2001357
    1. Saini R. K., Zamany A. J., Keum Y. S. (2017). Ripening improves the content of carotenoid, alpha-tocopherol, and polyunsaturated fatty acids in tomato (Solanum lycopersicum L.) fruits. 3 Biotech 7:43 10.1007/s13205-017-0666-0
    1. Sawardekar S. B., Patel T. C., Uchil D. (2016). Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: an in vitro study. Indian J. Pharmacol. 48, 26–31. 10.4103/0253-7613.174428
    1. Schönthal A. H. (2012). Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica 2012:857516 10.6064/2012/857516
    1. Sellers R. S., Radi Z. A., Khan N. K. (2010). Pathophysiology of cyclooxygenases in cardiovascular homeostasis. Vet. Pathol. 47, 601–613. 10.1177/0300985810364389
    1. Sesso H. D., Liu S., Gaziano J. M., Buring J. E. (2003). Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 133, 2336–2341. 10.1093/jn/133.7.2336
    1. Shi J., Le Maguer M. (2000). Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit. Rev. Biotechnol. 20, 293–334. 10.1080/07388550091144212
    1. Song B., Liu K., Gao Y., Zhao L., Fang H., Li Y., et al. (2017). Lycopene and risk of cardiovascular diseases: a meta-analysis of observational studies. Mol. Nutr. Food Res. 61:1601009 10.1002/mnfr.201601009
    1. Stangl V., Kuhn C., Hentschel S., Jochmann N., Jacob C., Böhm V., Fröhlich K., et al. . (2011). Lack of effects of tomato products on endothelial function in human subjects: results of a randomised, placebo-controlled cross-over study. Br. J. Nutr. 105, 263–267. 10.1017/S0007114510003284
    1. Sultan Alvi S., Ansari I. A., Khan I., Iqbal J., Khan M. S. (2017). Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic. Biol. Med. 108, 394–403. 10.1016/j.freeradbiomed.2017.04.012
    1. Sung H. J., Eskin S. G., Sakurai Y., Yee A., Kataoka N., McIntire L. V. (2005). Oxidative stress produced with cell migration increases synthetic phenotype of vascular smooth muscle cells. Ann. Biomed. Eng. 33, 1546–1554. 10.1007/s10439-005-7545-2
    1. Tabrez S., Al-Shali K. Z., Ahmad S. (2015). Lycopene powers the inhibition of glycation-induced diabetic nephropathy: a novel approach to halt the AGE-RAGE axis menace. Biofactors 41, 372–381. 10.1002/biof.1238
    1. Tanazawa K., Shimada Y., Kuroda M., Tsujita Y., Arai M., Watanabe H. (1980). WHHL-rabbit: a low density lipoprotein receptor-deficient animal model for familial hypercholesterolemia. FEBS Lett. 118, 81–84. 10.1016/0014-5793(80)81223-3
    1. Tang X., Yang X., Peng Y., Lin J. (2009). Protective effects of lycopene against H2O2-induced oxidative injury and apoptosis in human endothelial cells. Cardiovasc. Drugs Ther. 23, 439–498. 10.1007/s10557-009-6206-3
    1. Thies F., Masson L. F., Rudd A., Vaughan N., Tsang K., Brittenden J., et al. . (2012). Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: a randomized controlled trial. Am. J. Clin. Nutr. 95, 1013–1022. 10.3945/ajcn.111.026286
    1. Thies F., Mills L. M., Moir S., Masson L. F. (2017). Cardiovascular benefits of lycopene: fantasy or reality? Proc. Nutr. Soc. 76, 122–129. 10.1017/S0029665116000744
    1. Touboul P. J. (2015). Intima-media thickness of carotid arteries. Front. Neurol. Neurosci. 36, 31–39. 10.1159/000366234
    1. Tsitsimpikou C., Tsarouhas K., Kioukia-Fougia N., Skondra C., Fragkiadaki P., Papalexis P., et al. . (2014). Dietary supplementation with tomato-juice in patients with metabolic syndrome: a suggestion to alleviate detrimental clinical factors. Food Chem. Toxicol. 74, 9–13. 10.1016/j.fct.2014.08.014
    1. Vasconcelos A. G., Amorim A. D. G. N., Dos Santos R. C., Souza J. M. T., de Souza L. K. M., Araújo T. S. L., et al. . (2017). Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res. Int. 99(Pt 2), 959–968. 10.1016/j.foodres.2017.01.017
    1. Verghese M., Richardson J. E., Boateng J., Shackelford L. A., Howard C., Walker L. T., et al. (2008). Dietary lycopene has a protective effect on cardiovascular disease in New Zeeland male rabbits. J. Biol. Sci. 8, 268–277. 10.3923/jbs.2008.268.277
    1. Viuda-Martos M., Sanchez-Zapata E., Sayas-Barberá E., Sendra E., Pérez-Álvarez J. A., Fernández-López J. (2014). Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review. Crit. Rev. Food Sci. Nutr. 54, 1032–1049. 10.1080/10408398.2011.623799
    1. Vlachopoulos C., Aznaouridis K., Stefanadis C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial stiffness. A systematic review and meta-analysis. J. Am. Coll. Cardiol. 55, 1318–1327. 10.1016/j.jacc.2009.10.061
    1. Waltenberger B., Mocan A., Šmejkal K., Heiss E. H., Atanasov A. G. (2016). Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 21:807 10.3390/molecules21060807
    1. Wang X., Lv H., Gu Y., Wang X., Cao H., Tang Y., et al. . (2014). Protective effect of lycopene on cardiac function and myocardial fibrosis after acute myocardial infarction in rats via the modulation of p38 and MMP-9. J. Mol. Histol. 45, 113–120. 10.1007/s10735-013-9535-2
    1. Wolak T., Paran E. (2013). Can carotenoids attenuate vascular aging? Vascul. Pharmacol. 59, 63–66. 10.1016/j.vph.2013.07.006
    1. Wong Z. W., Thanikachalam P. V., Ramamurthy S. (2017). Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: a review. Biomed. Pharmacother. 94, 1145–1166. 10.1016/j.biopha.2017.08.009
    1. Wood N., Johnson R. B. (2004). The relationship between tomato intake and congestive heart failure risk in periodontitis subjects. J. Clin. Periodontol. 31, 574–580. 10.1111/j.1600-051X.2004.00531.x
    1. Wu G., Collins J. K., Perkins-Veazie P., Siddiq M., Dolan K. D., Kelly K. A., et al. . (2007). Dietary supplementation with watermenlon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J. Nutr. 137, 2680–2685. 10.1093/jn/137.12.2680
    1. Xaplanteris P., Pietri P., Terentes-Printzios D., Kardara D., Alexopoulos N., Aznaouridis K., et al. . (2012). Tomato paste supplemen-tation improves endothelial dynamics and reduces plasma total oxida-tive status in healthy subjects. Nutr. Res. 32, 390–394. 10.1016/j.nutres.2012.03.011
    1. Xu J., Hu H., Chen B., Yue R., Zhou Z., Liu Y., et al. . (2015). Lycopene protects against hypoxia/reoxygenation injury by alleviating er stress induced apoptosis in neonatal mouse cardiomyocytes. PLoS ONE 10:e0136443. 10.1371/journal.pone.0136443
    1. Xu X. R., Zou Z. Y., Huang Y. M., Xiao X., Ma L., Lin X. M. (2012). Serum carotenoids in relation to risk factors for development of atherosclerosis. Clin. Biochem. 45, 1357–1361. 10.1016/j.clinbiochem.2012.07.101
    1. Yeo H. Y., Kim O. Y., Lim H. H., Kim J. Y., Lee J. H. (2011). Association of serum lycopene and brachial-ankle pulse wave velocity with metabolic syndrome. Metab. Clin. Exp. 60, 537–543. 10.1016/j.metabol.2010.05.003
    1. Zeng Y. C., Peng L. S., Zou L., Huang S. F., Xie Y., Mu G. P., et al. . (2017). Protective effect and mechanism of lycopene on endothelial progenitor cells (EPCs) from type 2 diabetes mellitus rats. Biomed. Pharmacother. 92, 86–94, 10.1016/j.biopha.2017.05.018
    1. Zhang Y., Guallar E., Qiao Y., Wasserman B. A. (2014). Is carotid intima-media thickness as predictive as other noninvasive techniques for the detection of coronary artery disease? Arterioscler. Thromb. Vasc. Biol. 34, 1341–1345. 10.1161/ATVBAHA.113.302075
    1. Zou Z. Y., Xu X. R., Lin X. M., Zhang H. B., Xiao X., Ouyang L., et al. . (2014). Effects of lutein and lycopene on carotid intima-media thickness in Chinesesubjects with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 111, 474–480. 10.1017/S0007114513002730
    1. Zubair N., Kooperberg C., Liu J., Di C., Peters U., Neuhouser M. L. (2015). Genetic variation predicts serum lycopene concentrations in a multiethnic population of postmenopausal women. J. Nutr. 145, 187–192. 10.3945/jn.114.202150

Source: PubMed

3
Abonner